🚀 GPTuzmodel
GPTuz是基於GPT - 2小型模型的烏茲別克語先進語言模型。該模型在NVIDIA V100 32GB的GPU上,使用從kun.uz獲取的0.53GB數據,基於遷移學習和微調技術訓練了超過1天。
🚀 快速開始
模型加載
from transformers import AutoTokenizer, AutoModelWithLMHead
import torch
tokenizer = AutoTokenizer.from_pretrained("rifkat/GPTuz")
model = AutoModelWithLMHead.from_pretrained("rifkat/GPTuz")
tokenizer.model_max_length=1024
生成單個單詞
text = "Covid-19 га қарши эмлаш бошланди,"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
loss, logits = outputs[:2]
predicted_index = torch.argmax(logits[0, -1, :]).item()
predicted_text = tokenizer.decode([predicted_index])
print('input text:', text)
print('predicted text:', predicted_text)
生成完整序列
text = "Covid-19 га қарши эмлаш бошланди, "
inputs = tokenizer(text, return_tensors="pt")
sample_outputs = model.generate(inputs.input_ids,
pad_token_id=50256,
do_sample=True,
max_length=50,
top_k=40,
num_return_sequences=1)
for i, sample_output in enumerate(sample_outputs):
print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist())))
📚 詳細文檔
模型信息
屬性 |
詳情 |
模型類型 |
基於GPT - 2小型模型的烏茲別克語語言模型 |
訓練數據 |
從kun.uz獲取的0.53GB數據 |
訓練硬件 |
NVIDIA V100 32GB GPU |
訓練技術 |
遷移學習和微調 |
引用信息
@misc {rifkat_davronov_2022,
authors = { {Adilova Fatima,Rifkat Davronov, Samariddin Kushmuratov, Ruzmat Safarov} },
title = { GPTuz (Revision 2a7e6c0) },
year = 2022,
url = { https://huggingface.co/rifkat/GPTuz },
doi = { 10.57967/hf/0143 },
publisher = { Hugging Face }
}
📄 許可證
本項目採用Apache - 2.0許可證。