🚀 Promptist:用於自動提示優化的強化學習
Promptist 藉助強化學習實現自動提示優化,利用語言模型作為提示接口,將用戶輸入優化為模型偏好的提示,為文本到圖像生成提供更優質的提示方案。
新聞動態
核心特性
- 語言模型充當提示接口,將用戶輸入優化為模型偏好的提示。
- 通過強化學習學習用於自動提示優化的語言模型。

📦 安裝指南
你可以在 https://huggingface.co/spaces/microsoft/Promptist 嘗試在線演示。
⚠️ 重要提示
HuggingFace 空間的在線演示使用的是 CPU,因此生成速度可能較慢。若要更快地生成結果,請使用 GPU 本地加載模型。
💻 使用示例
基礎用法
import gradio as grad
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
def load_prompter():
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
return prompter_model, tokenizer
prompter_model, prompter_tokenizer = load_prompter()
def generate(plain_text):
input_ids = prompter_tokenizer(plain_text.strip()+" Rephrase:", return_tensors="pt").input_ids
eos_id = prompter_tokenizer.eos_token_id
outputs = prompter_model.generate(input_ids, do_sample=False, max_new_tokens=75, num_beams=8, num_return_sequences=8, eos_token_id=eos_id, pad_token_id=eos_id, length_penalty=-1.0)
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
res = output_texts[0].replace(plain_text+" Rephrase:", "").strip()
return res
txt = grad.Textbox(lines=1, label="Initial Text", placeholder="Input Prompt")
out = grad.Textbox(lines=1, label="Optimized Prompt")
examples = ["A rabbit is wearing a space suit", "Several railroad tracks with one train passing by", "The roof is wet from the rain", "Cats dancing in a space club"]
grad.Interface(fn=generate,
inputs=txt,
outputs=out,
title="Promptist Demo",
description="Promptist is a prompt interface for Stable Diffusion v1-4 (https://huggingface.co/CompVis/stable-diffusion-v1-4) that optimizes user input into model-preferred prompts.",
examples=examples,
allow_flagging='never',
cache_examples=False,
theme="default").launch(enable_queue=True, debug=True)