🚀 QuantFactory/TableLLM-13b-GGUF
這是一個專為處理表格數據操作任務而設計的強大量化模型,能根據不同場景生成代碼解決方案或直接文本答案,有效滿足實際辦公場景需求。
🚀 快速開始
本項目是使用 llama.cpp 創建的 RUCKBReasoning/TableLLM-13b 的量化版本。
✨ 主要特性
模型基礎信息
屬性 |
詳情 |
基礎模型 |
TableLLM - 13b |
庫名稱 |
transformers |
任務標籤 |
表格問答 |
許可證 |
llama2 |
數據集 |
RUCKBReasoning/TableLLM - SFT |
語言 |
英文 |
標籤 |
表格、問答、代碼 |
模型功能特性
TableLLM 系列包含 TableLLM - 7B 和 TableLLM - 13B 兩個不同規模的模型,它們基於 CodeLlama - 7b - Instruct - hf 和 CodeLlama - 13b - Instruct - hf 進行微調。該模型能根據不同場景生成代碼解決方案或直接文本答案來處理表格數據操作任務:
- 代碼生成:用於處理嵌入電子表格的表格數據,常涉及表格的插入、刪除、更新、查詢、合併和繪圖操作。
- 文本生成:用於處理嵌入文檔的表格數據,常涉及短表格的查詢操作。
評估結果
在多個基準測試中對 TableLLM 的代碼解決方案生成能力和文本答案生成能力進行了評估,結果如下:
模型 |
WikiTQ |
TAT - QA |
FeTaQA |
OTTQA |
WikiSQL |
Spider |
自建基準測試 |
平均得分 |
TaPEX |
38.5 |
– |
– |
– |
83.9 |
15.0 |
/ |
45.8 |
TaPas |
31.5 |
– |
– |
74.2 |
23.1 |
/ |
|
42.92 |
TableLlama |
24.0 |
22.2 |
20.5 |
6.4 |
43.7 |
9.0 |
/ |
20.7 |
GPT3.5 |
58.5 |
72.1 |
71.2 |
60.8 |
81.7 |
67.4 |
77.1 |
69.8 |
GPT4 |
74.1 |
77.1 |
78.4 |
69.5 |
84.0 |
69.5 |
77.8 |
75.8 |
Llama2 - Chat (13B) |
48.8 |
49.6 |
67.7 |
61.5 |
– |
– |
– |
56.9 |
CodeLlama (13B) |
43.4 |
47.2 |
57.2 |
49.7 |
38.3 |
21.9 |
47.6 |
43.6 |
Deepseek - Coder (33B) |
6.5 |
11.0 |
7.1 |
7.4 |
72.5 |
58.4 |
73.9 |
33.8 |
StructGPT (GPT3.5) |
52.5 |
27.5 |
11.8 |
14.0 |
67.8 |
84.8 |
/ |
48.9 |
Binder (GPT3.5) |
61.6 |
12.8 |
6.8 |
5.1 |
78.6 |
52.6 |
/ |
42.5 |
DATER (GPT3.5) |
53.4 |
28.4 |
18.3 |
13.0 |
58.2 |
26.5 |
/ |
37.0 |
TableLLM - 7B (Ours) |
58.8 |
66.9 |
72.6 |
63.1 |
86.6 |
82.6 |
78.8 |
72.8 |
TableLLM - 13B (Ours) |
62.4 |
68.2 |
74.5 |
62.5 |
90.7 |
83.4 |
80.8 |
74.7 |
💻 使用示例
基礎用法
代碼解決方案
單表插入、刪除、更新、查詢和繪圖操作的提示模板:
[INST]Below are the first few lines of a CSV file. You need to write a Python program to solve the provided question.
Header and first few lines of CSV file:
{csv_data}
Question: {question}[/INST]
兩表合併操作的提示模板:
[INST]Below are the first few lines two CSV file. You need to write a Python program to solve the provided question.
Header and first few lines of CSV file 1:
{csv_data1}
Header and first few lines of CSV file 2:
{csv_data2}
Question: {question}[/INST]
csv_data
字段填充你提供的表格文件的前幾行,示例如下:
Sex,Length,Diameter,Height,Whole weight,Shucked weight,Viscera weight,Shell weight,Rings
M,0.455,0.365,0.095,0.514,0.2245,0.101,0.15,15
M,0.35,0.265,0.09,0.2255,0.0995,0.0485,0.07,7
F,0.53,0.42,0.135,0.677,0.2565,0.1415,0.21,9
M,0.44,0.365,0.125,0.516,0.2155,0.114,0.155,10
I,0.33,0.255,0.08,0.205,0.0895,0.0395,0.055,7
文本答案
短表直接文本答案生成的提示模板:
[INST]Offer a thorough and accurate solution that directly addresses the Question outlined in the [Question].
### [Table Text]
{table_descriptions}
### [Table]
{table_in_csv}
### [Question]
{question}
### [Solution][INST/]
高級用法
如需瞭解更多關於如何使用 TableLLM 的詳細信息,請參考我們的 GitHub 頁面:https://github.com/TableLLM/TableLLM
📚 詳細文檔
關於 TableLLM 的更多詳細信息,可參考原模型論文:TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios
📄 許可證
本項目使用 llama2 許可證。