🚀 SciFive Pubmed+PMC Base
SciFive Pubmed+PMC Base是一個用於生物醫學文獻處理的文本到文本的變換器模型,可應用於多種自然語言處理任務,如令牌分類、文本分類、問答和文本生成等。
🚀 快速開始
對於更多詳細信息,請查看我們的GitHub倉庫。
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-base-Pubmed_PMC")
model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-base-Pubmed_PMC")
sentence = "Identification of APC2 , a homologue of the adenomatous polyposis coli tumour suppressor ."
text = sentence + "</s>"
encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=256,
early_stopping=True
)
for output in outputs:
line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(line)
💻 使用示例
基礎用法
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-base-Pubmed_PMC")
model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-base-Pubmed_PMC")
sentence = "Identification of APC2 , a homologue of the adenomatous polyposis coli tumour suppressor ."
text = sentence + "</s>"
encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=256,
early_stopping=True
)
for output in outputs:
line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(line)
📚 詳細文檔
論文信息
論文:SciFive: a text-to-text transformer model for biomedical literature
作者:Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet
標籤與數據集
屬性 |
詳情 |
標籤 |
令牌分類、文本分類、問答、文本到文本生成、文本生成 |
數據集 |
Pubmed、PMC開放獲取數據集 |