🚀 Mamba
本倉庫包含與 transformers
兼容的 mamba-2.8b
模型。模型的檢查點未作改動,但完整的 config.json
文件和分詞器已上傳至本倉庫。
🚀 快速開始
在 transformers=4.39.0
版本發佈之前,你需要從 main
分支安裝 transformers
:
pip install git+https://github.com/huggingface/transformers@main
我們還建議你使用以下命令安裝 causal_conv_1d
和 mamba-ssm
:
pip install causal-conv1d>=1.2.0
pip install mamba-ssm
如果這兩個庫中有任何一個未安裝,將使用 “eager” 實現;否則,將使用更優化的 cuda
內核。
💻 使用示例
基礎用法
你可以使用經典的 generate
API 進行文本生成:
>>> from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
>>> model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf")
>>> input_ids = tokenizer("Hey how are you doing?", return_tensors="pt")["input_ids"]
>>> out = model.generate(input_ids, max_new_tokens=10)
>>> print(tokenizer.batch_decode(out))
["Hey how are you doing?\n\nI'm so glad you're here."]
高級用法
使用 peft
庫進行微調時,建議將模型保持為 float32 格式:
from datasets import load_dataset
from trl import SFTTrainer
from peft import LoraConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-130m-hf")
dataset = load_dataset("Abirate/english_quotes", split="train")
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=4,
logging_dir='./logs',
logging_steps=10,
learning_rate=2e-3
)
lora_config = LoraConfig(
r=8,
target_modules=["x_proj", "embeddings", "in_proj", "out_proj"],
task_type="CAUSAL_LM",
bias="none"
)
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
peft_config=lora_config,
train_dataset=dataset,
dataset_text_field="quote",
)
trainer.train()