Tweety 7b Tatar V24a
針對韃靼語開發的跨詞元大語言模型,基於Mistral-7B-Instruct-v0.2轉換而來
下載量 37
發布時間 : 4/11/2024
模型概述
本模型是針對韃靼語開發的跨詞元大語言模型,可直接用於基礎語言建模任務,也可進一步微調以執行更復雜的操作。
模型特點
跨詞元化
針對韃靼語的原生分詞器進行微調,使其能夠生成該語言內容
低資源語言支持
專注於韃靼語這種低資源語言的建模
可擴展性
可作為基礎模型進一步微調以執行更復雜的任務
模型能力
韃靼語文本生成
詞語類比
文本摘要
使用案例
語言學習與研究
韃靼語語言建模
用於韃靼語的基礎語言建模任務
文本處理
韃靼語文本摘要
生成韃靼語文本的摘要
🚀 特維提韃靼語模型 / 基礎7B版本 / 2024-v1
本模型是專為韃靼語打造的大型語言模型,基於MistralAI訓練的Mistral - 7B - Instruct - v0.2模型轉換而來,通過獨特的跨分詞技術,讓模型能更好地處理韃靼語相關任務,為韃靼語的自然語言處理帶來新的可能。
🚀 快速開始
本模型可以像HuggingFace框架中的任何大語言模型一樣使用:
import transformers
MODEL_NAME = "Tweeties/tweety-tatar-base-7b-2024-v1"
generate = transformers.pipeline("text-generation", model=MODEL_NAME)
✨ 主要特性
- 專為韃靼語設計:本模型是針對韃靼語進行跨分詞處理的大語言模型,能夠更好地適應韃靼語的語言特點和表達習慣。
- 基於優秀基礎模型:由MistralAI訓練的Mistral - 7B - Instruct - v0.2模型轉換而來,繼承了其強大的語言理解和生成能力。
- 應用場景廣泛:既可以直接用於執行韃靼語的基本語言建模操作,也可以進行微調以執行更復雜的任務。
📦 安裝指南
暫未提及具體安裝步驟,可參考HuggingFace框架中通用的大語言模型安裝方法。
💻 使用示例
基礎用法
import transformers
MODEL_NAME = "Tweeties/tweety-tatar-base-7b-2024-v1"
generate = transformers.pipeline("text-generation", model=MODEL_NAME)
高級用法
單詞類比
ANALOGY_PROMPT = """Бу аналоглар таблицасын тутырыгыз:
* {x1} : {y1}
* {x2} :"""
def score_analogy(x1, y1, x2, y2):
Y2_PROMPT = ANALOGY_PROMPT.replace('{x1}', x1).replace('{y1}', y1).replace('{x2}', x2)
answer = generate(Y2_PROMPT, use_cache=True, do_sample=False, max_new_tokens=10, return_full_text=False, pad_token_id=generate.tokenizer.eos_token_id, eos_token_id=generate.tokenizer.convert_tokens_to_ids(['<0x0A>','</s>']))[0]['generated_text'].strip()
return 1 if answer == y2 else 0
score_analogy('Мәскәү', 'Русия', 'Әнкара', 'Төркия') # 1
文本摘要
SUMMARIZE = "Түбәндәге текстка йомгак ясагыз:\n"
LONG_TEXT = "\n\nОзын текст:\n"
LONG_TEXT_DEMO = "Кеше организмы катлаулы организм, аның өчен кирәкле туклыклы матдәләрнең аерым баланс таләп итә. Кеше организмының туклану рационы нигездә пешекләнгән ризыклардан тора икән, аның организмы бу ысул белән туклануга җайлаша. Әмма, шул ук кеше кинәт чимал диетасына күчә икән, аның организмы әлеге үзгәрешне кабул итә алмый, бу мөмкин кадәр зыян китерергә мөмкин." # The human body is a complex organism that requires a specific balance of nutrients. If the human body's diet consists mainly of cooked foods, its body adapts to this type of nutrition. However, if the same person suddenly switches to a raw diet, his body cannot adapt to this change, which can be harmful. # The human body is a complex organism that requires a specific balance of nutrients to function optimally. When a person's diet consists primarily of cooked food, their body adapts to this way of eating. However, if that same person suddenly switches to a raw food diet, their body may not be able to handle the sudden change, leading to potential harm.
SHORT_TEXT = "\n\nКыска текст:\n"
SHORT_TEXT_DEMO = "Әмма пешкән ризык ашауга гына күнгән организмга кинәт чи ризык белән туклануга күчүнең зарарлы нәтиҗәсе дә булырга мөмкин." # However, a body accustomed to eating only cooked food can have harmful consequences when suddenly switching to eating raw food.
def generate_tatar_summary(tatar_text_to_summarize: str) -> str:
# craft the 1-shot example
input_ids = torch.concat([
tokenizer.encode(SUMMARIZE, return_tensors='pt'),
tokenizer.encode(LONG_TEXT, add_special_tokens=False, return_tensors='pt'),
tokenizer.encode(LONG_TEXT_DEMO, add_special_tokens=False, return_tensors='pt'),
tokenizer.encode(SHORT_TEXT, add_special_tokens=False, return_tensors='pt'),
tokenizer.encode(SHORT_TEXT_DEMO, add_special_tokens=False, return_tensors='pt'),
tokenizer.encode("\n\n", add_special_tokens=False, return_tensors='pt')
], axis=1)
# craft the input
input_ids = torch.concat([
input_ids,
tokenizer.encode(SUMMARIZE, return_tensors='pt'),
tokenizer.encode(LONG_TEXT, add_special_tokens=False, return_tensors='pt'),
tokenizer.encode(tatar_text_to_summarize, add_special_tokens=False, return_tensors='pt'),
tokenizer.encode(SHORT_TEXT, add_special_tokens=False, return_tensors='pt'),
], axis=1)
# generate the output
model_inputs = {'input_ids':input_ids.to(cuda_device)}
model_outputs = model.generate(
**model_inputs,
max_new_tokens=80,
num_beams=8,
no_repeat_ngram_size=6,
early_stopping=False,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.convert_tokens_to_ids(['<0x0A>','</s>']),
)
# decode the output
return (tokenizer.decode(model_outputs[0][input_ids.shape[1]:])).rstrip()
generate_tatar_summary("Зур шартлау (ингл. Big Bang) – Галәмнең башлангыч, сингуляр халәттә торган чорын тасвирлаучы космологик модель. Әле ХХ гасырда да без яшәгән Галәм статик структуралы, дигән фикер яшәгән. Ягъни, Галәмнең башы һәм ахыры юк, имеш, ул һәрвакыт булган һәм булачак. Бу фикер фән дөньясында бик озак, астрономия фәненең бөтен нигезләрен җимереп яңа теория барлыкка килгәнче яшәгән. Бу теориянең исеме – «Зур шартлау» теориясе.")
📚 詳細文檔
模型信息
屬性 | 詳情 |
---|---|
模型類型 | 使用米斯特拉爾架構的基礎模型 |
訓練數據 | oscar - corpus/OSCAR - 2301 |
開發人員 | François Remy (根特大學)、Alfiya Khabibullina (BeCode) 等 |
資助方 | 根特大學IDLab / GPULab |
語言 | 韃靼語 |
許可證 | Apache 2.0 |
適用範圍
本模型可直接用於執行韃靼語的基本語言建模操作,也可進行微調以執行更復雜的任務。該模型未經過基於指令或對話的微調,這意味著它在少樣本設置中效果最佳。
📄 許可證
本模型採用Apache 2.0許可證。
📚 引用
如果您使用此模型,請按以下方式引用我們的工作:
@article{tweeties2024,
title = {Trans-Tokenization and Cross-lingual Vocabulary Transfers: Language Adaptation of LLMs for Low-Resource NLP},
author = {François Remy and Pieter Delobelle and Hayastan Avetisyan and Alfiya Khabibullina and Miryam de Lhoneux and Thomas Demeester},
url = {https://arxiv.org/abs/2408.04303},
year = {2024},
note = {Accepted at COLM 2024}
}
Phi 2 GGUF
其他
Phi-2是微軟開發的一個小型但強大的語言模型,具有27億參數,專注於高效推理和高質量文本生成。
大型語言模型 支持多種語言
P
TheBloke
41.5M
205
Roberta Large
MIT
基於掩碼語言建模目標預訓練的大型英語語言模型,採用改進的BERT訓練方法
大型語言模型 英語
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基礎模型的蒸餾版本,在保持相近性能的同時更輕量高效,適用於序列分類、標記分類等自然語言處理任務。
大型語言模型 英語
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一個多語言大語言模型,針對多語言對話用例進行了優化,在常見的行業基準測試中表現優異。
大型語言模型 英語
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基於100種語言的2.5TB過濾CommonCrawl數據預訓練的多語言模型,採用掩碼語言建模目標進行訓練。
大型語言模型 支持多種語言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基於Transformer架構的英語預訓練模型,通過掩碼語言建模目標在海量文本上訓練,支持文本特徵提取和下游任務微調
大型語言模型 英語
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI發佈的開放預訓練Transformer語言模型套件,參數量從1.25億到1750億,旨在對標GPT-3系列性能,同時促進大規模語言模型的開放研究。
大型語言模型 英語
O
facebook
6.3M
198
1
基於transformers庫的預訓練模型,適用於多種NLP任務
大型語言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多語言大語言模型系列,包含8B、70B和405B參數規模,支持8種語言和代碼生成,優化了多語言對話場景。
大型語言模型
Transformers 支持多種語言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基礎版是由Google開發的文本到文本轉換Transformer模型,參數規模2.2億,支持多語言NLP任務。
大型語言模型 支持多種語言
T
google-t5
5.4M
702
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98