J.O.S.I.E.3 Beta12 7B Slerp
J.O.S.I.E.3-Beta12-7B-slerp 是一個通過合併 Weyaxi/Einstein-v6-7B 和 argilla/CapybaraHermes-2.5-Mistral-7B 模型而成的7B參數大語言模型,支持多語言交互,採用ChatML提示格式。
下載量 17
發布時間 : 4/23/2024
模型概述
該模型是一個私人超級智能AI助手,專注於提供高質量的對話和問答服務,支持多種語言和複雜任務處理。
模型特點
多語言支持
支持包括中文在內的6種語言交互
合併模型優勢
結合Einstein-v6和CapybaraHermes兩個模型的優勢,通過slerp方法合併
ChatML格式
採用標準化的ChatML提示格式,便於集成到對話系統中
量化支持
提供GGUF量化版本,便於在不同硬件上部署
模型能力
多語言文本生成
智能對話
知識問答
任務完成
使用案例
個人助手
私人AI助手
作為個人日常助手,回答各種問題並提供建議
在HellaSwag測試集上達到83.98%的歸一化準確率
教育
學科知識問答
回答高中和大學水平的各學科問題
在高中地理測試中達到79.8%準確率
🚀 J.O.S.I.E.3-Beta12-7B-slerp
J.O.S.I.E.3-Beta12-7B-slerp 是一個融合模型,它使用 LazyMergekit 對以下模型進行了融合:
該模型在自定義的 J.O.S.I.E.v3.11 數據集上進行了進一步微調,採用 ChatML 提示格式。
<|im_start|>system
You are JOSIE, my private and superinteligent AI Assistant.<|im_end|>
<|im_start|>user
{{ .Prompt }}<|im_end|>
<|im_start|>assistant
{{ .Response }}<|im_end|>
🚀 快速開始
在 ollama 中運行
ollama run goekdenizguelmez/j.o.s.i.e.v3-beta12.1
目前僅支持 q4-k-m 量化版本!
✨ 主要特性
- 融合了多個優秀模型的能力。
- 在自定義數據集上進行微調,以適應特定的任務和場景。
- 支持多種語言,包括英語、德語、西班牙語、法語、日語和中文。
📦 安裝指南
安裝依賴
!pip install -qU transformers accelerate
💻 使用示例
基礎用法
from transformers import AutoTokenizer
import transformers
import torch
model = "Isaak-Carter/J.O.S.I.E.3-Beta12-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
📚 詳細文檔
🧩 配置信息
slices:
- sources:
- model: Weyaxi/Einstein-v6-7B
layer_range: [0, 32]
- model: argilla/CapybaraHermes-2.5-Mistral-7B
layer_range: [0, 32]
merge_method: slerp
base_model: argilla/CapybaraHermes-2.5-Mistral-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
評估結果
{
"all": {
"acc": 0.635008846776534,
"acc_stderr": 0.03244450973873997,
"acc_norm": 0.6365238167399629,
"acc_norm_stderr": 0.033101612504829854,
"mc1": 0.397796817625459,
"mc1_stderr": 0.017133934248559635,
"mc2": 0.5816259277988214,
"mc2_stderr": 0.01521267822060948
},
"harness|arc:challenge|25": {
"acc": 0.6220136518771331,
"acc_stderr": 0.0141696645203031,
"acc_norm": 0.6459044368600683,
"acc_norm_stderr": 0.013975454122756557
},
"harness|hellaswag|10": {
"acc": 0.6512646883091018,
"acc_stderr": 0.004755960559929163,
"acc_norm": 0.8397729535949015,
"acc_norm_stderr": 0.003660668242740655
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.4,
"acc_stderr": 0.04923659639173309,
"acc_norm": 0.4,
"acc_norm_stderr": 0.04923659639173309
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.5703703703703704,
"acc_stderr": 0.042763494943765995,
"acc_norm": 0.5703703703703704,
"acc_norm_stderr": 0.042763494943765995
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.6842105263157895,
"acc_stderr": 0.0378272898086547,
"acc_norm": 0.6842105263157895,
"acc_norm_stderr": 0.0378272898086547
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.58,
"acc_stderr": 0.049604496374885836,
"acc_norm": 0.58,
"acc_norm_stderr": 0.049604496374885836
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.6792452830188679,
"acc_stderr": 0.028727502957880267,
"acc_norm": 0.6792452830188679,
"acc_norm_stderr": 0.028727502957880267
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7361111111111112,
"acc_stderr": 0.03685651095897532,
"acc_norm": 0.7361111111111112,
"acc_norm_stderr": 0.03685651095897532
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.54,
"acc_stderr": 0.05009082659620332,
"acc_norm": 0.54,
"acc_norm_stderr": 0.05009082659620332
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.51,
"acc_stderr": 0.05024183937956912,
"acc_norm": 0.51,
"acc_norm_stderr": 0.05024183937956912
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.29,
"acc_stderr": 0.04560480215720684,
"acc_norm": 0.29,
"acc_norm_stderr": 0.04560480215720684
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.6416184971098265,
"acc_stderr": 0.036563436533531585,
"acc_norm": 0.6416184971098265,
"acc_norm_stderr": 0.036563436533531585
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.3235294117647059,
"acc_stderr": 0.04655010411319619,
"acc_norm": 0.3235294117647059,
"acc_norm_stderr": 0.04655010411319619
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.76,
"acc_stderr": 0.04292346959909283,
"acc_norm": 0.76,
"acc_norm_stderr": 0.04292346959909283
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.5829787234042553,
"acc_stderr": 0.03223276266711712,
"acc_norm": 0.5829787234042553,
"acc_norm_stderr": 0.03223276266711712
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.4649122807017544,
"acc_stderr": 0.046920083813689104,
"acc_norm": 0.4649122807017544,
"acc_norm_stderr": 0.046920083813689104
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5517241379310345,
"acc_stderr": 0.04144311810878152,
"acc_norm": 0.5517241379310345,
"acc_norm_stderr": 0.04144311810878152
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.42063492063492064,
"acc_stderr": 0.025424835086924006,
"acc_norm": 0.42063492063492064,
"acc_norm_stderr": 0.025424835086924006
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.4444444444444444,
"acc_stderr": 0.044444444444444495,
"acc_norm": 0.4444444444444444,
"acc_norm_stderr": 0.044444444444444495
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.44,
"acc_stderr": 0.04988876515698589,
"acc_norm": 0.44,
"acc_norm_stderr": 0.04988876515698589
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.7548387096774194,
"acc_stderr": 0.024472243840895525,
"acc_norm": 0.7548387096774194,
"acc_norm_stderr": 0.024472243840895525
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.5024630541871922,
"acc_stderr": 0.035179450386910616,
"acc_norm": 0.5024630541871922,
"acc_norm_stderr": 0.035179450386910616
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.66,
"acc_stderr": 0.04760952285695237,
"acc_norm": 0.66,
"acc_norm_stderr": 0.04760952285695237
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7818181818181819,
"acc_stderr": 0.03225078108306289,
"acc_norm": 0.7818181818181819,
"acc_norm_stderr": 0.03225078108306289
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.797979797979798,
"acc_stderr": 0.02860620428922988,
"acc_norm": 0.797979797979798,
"acc_norm_stderr": 0.02860620428922988
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.8756476683937824,
"acc_stderr": 0.023814477086593552,
"acc_norm": 0.8756476683937824,
"acc_norm_stderr": 0.023814477086593552
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.658974358974359,
"acc_stderr": 0.02403548967633509,
"acc_norm": 0.658974358974359,
"acc_norm_stderr": 0.02403548967633509
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.32592592592592595,
"acc_stderr": 0.02857834836547308,
"acc_norm": 0.32592592592592595,
"acc_norm_stderr": 0.02857834836547308
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.6638655462184874,
"acc_stderr": 0.030684737115135363,
"acc_norm": 0.6638655462184874,
"acc_norm_stderr": 0.030684737115135363
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.304635761589404,
"acc_stderr": 0.03757949922943344,
"acc_norm": 0.304635761589404,
"acc_norm_stderr": 0.03757949922943344
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8238532110091743,
"acc_stderr": 0.016332882393431353,
"acc_norm": 0.8238532110091743,
"acc_norm_stderr": 0.016332882393431353
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.5092592592592593,
"acc_stderr": 0.03409386946992699,
"acc_norm": 0.5092592592592593,
"acc_norm_stderr": 0.03409386946992699
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.7990196078431373,
"acc_stderr": 0.02812597226565437,
"acc_norm": 0.7990196078431373,
"acc_norm_stderr": 0.02812597226565437
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.759493670886076,
"acc_stderr": 0.027820781981149685,
"acc_norm": 0.759493670886076,
"acc_norm_stderr": 0.027820781981149685
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.6681614349775785,
"acc_stderr": 0.03160295143776679,
"acc_norm": 0.6681614349775785,
"acc_norm_stderr": 0.03160295143776679
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.7404580152671756,
"acc_stderr": 0.03844876139785271,
"acc_norm": 0.7404580152671756,
"acc_norm_stderr": 0.03844876139785271
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.8016528925619835,
"acc_stderr": 0.036401182719909456,
"acc_norm": 0.8016528925619835,
"acc_norm_stderr": 0.036401182719909456
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.7777777777777778,
"acc_stderr": 0.040191074725573483,
"acc_norm": 0.7777777777777778,
"acc_norm_stderr": 0.040191074725573483
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.754601226993865,
"acc_stderr": 0.03380939813943354,
"acc_norm": 0.754601226993865,
"acc_norm_stderr": 0.03380939813943354
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.4732142857142857,
"acc_stderr": 0.047389751192741546,
"acc_norm": 0.4732142857142857,
"acc_norm_stderr": 0.047389751192741546
},
"harness|hendrycksTest-management|5": {
"acc": 0.7766990291262136,
"acc_stderr": 0.04123553189891431,
"acc_norm": 0.7766990291262136,
"acc_norm_stderr": 0.04123553189891431
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8632478632478633,
"acc_stderr": 0.022509033937077802,
"acc_norm": 0.8632478632478633,
"acc_norm_stderr": 0.022509033937077802
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.69,
"acc_stderr": 0.04648231987117316,
"acc_norm": 0.69,
"acc_norm_stderr": 0.04648231987117316
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8173690932311622,
"acc_stderr": 0.013816335389973141,
"acc_norm": 0.8173690932311622,
"acc_norm_stderr": 0.013816335389973141
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7254335260115607,
"acc_stderr": 0.02402774515526502,
"acc_norm": 0.7254335260115607,
"acc_norm_stderr": 0.02402774515526502
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.27039106145251396,
"acc_stderr": 0.014854993938010071,
"acc_norm": 0.27039106145251396,
"acc_norm_stderr": 0.014854993938010071
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7516339869281046,
"acc_stderr": 0.02473998135511359,
"acc_norm": 0.7516339869281046,
"acc_norm_stderr": 0.02473998135511359
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.7331189710610932,
"acc_stderr": 0.025122637608816653,
"acc_norm": 0.7331189710610932,
"acc_norm_stderr": 0.025122637608816653
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7222222222222222,
"acc_stderr": 0.024922001168886324,
"acc_norm": 0.7222222222222222,
"acc_norm_stderr": 0.024922001168886324
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.46099290780141844,
"acc_stderr": 0.02973659252642444,
"acc_norm": 0.46099290780141844,
"acc_norm_stderr": 0.02973659252642444
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.4680573663624511,
"acc_stderr": 0.012744149704869647,
"acc_norm": 0.4680573663624511,
"acc_norm_stderr": 0.012744149704869647
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6801470588235294,
"acc_stderr": 0.02833295951403121,
"acc_norm": 0.6801470588235294,
"acc_norm_stderr": 0.02833295951403121
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.6470588235294118,
"acc_stderr": 0.01933314202079716,
"acc_norm": 0.6470588235294118,
"acc_norm_stderr": 0.01933314202079716
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6727272727272727,
"acc_stderr": 0.0449429086625209,
"acc_norm": 0.6727272727272727,
"acc_norm_stderr": 0.0449429086625209
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.6816326530612244,
"acc_stderr": 0.029822533793982062,
"acc_norm": 0.6816326530612244,
"acc_norm_stderr": 0.029822533793982062
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.8507462686567164,
"acc_stderr": 0.025196929874827072,
"acc_norm": 0.8507462686567164,
"acc_norm_stderr": 0.025196929874827072
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.85,
"acc_stderr": 0.035887028128263734,
"acc_norm": 0.85,
"acc_norm_stderr": 0.035887028128263734
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5180722891566265,
"acc_stderr": 0.03889951252827216,
"acc_norm": 0.5180722891566265,
"acc_norm_stderr": 0.03889951252827216
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8362573099415205,
"acc_stderr": 0.028380919596145866,
"acc_norm": 0.8362573099415205,
"acc_norm_stderr": 0.028380919596145866
},
"harness|truthfulqa:mc|0": {
"mc1": 0.397796817625459,
"mc1_stderr": 0.017133934248559635,
"mc2": 0.5816259277988214,
"mc2_stderr": 0.01521267822060948
},
"harness|winogrande|5": {
"acc": 0.7963693764798737,
"acc_stderr": 0.011317798781626913
},
"harness|gsm8k|5": {
"acc": 0.5966641394996209,
"acc_stderr": 0.013512654781814702
}
}
📄 許可證
本項目採用 Apache-2.0 許可證。
Phi 2 GGUF
其他
Phi-2是微軟開發的一個小型但強大的語言模型,具有27億參數,專注於高效推理和高質量文本生成。
大型語言模型 支持多種語言
P
TheBloke
41.5M
205
Roberta Large
MIT
基於掩碼語言建模目標預訓練的大型英語語言模型,採用改進的BERT訓練方法
大型語言模型 英語
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基礎模型的蒸餾版本,在保持相近性能的同時更輕量高效,適用於序列分類、標記分類等自然語言處理任務。
大型語言模型 英語
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一個多語言大語言模型,針對多語言對話用例進行了優化,在常見的行業基準測試中表現優異。
大型語言模型 英語
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基於100種語言的2.5TB過濾CommonCrawl數據預訓練的多語言模型,採用掩碼語言建模目標進行訓練。
大型語言模型 支持多種語言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基於Transformer架構的英語預訓練模型,通過掩碼語言建模目標在海量文本上訓練,支持文本特徵提取和下游任務微調
大型語言模型 英語
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI發佈的開放預訓練Transformer語言模型套件,參數量從1.25億到1750億,旨在對標GPT-3系列性能,同時促進大規模語言模型的開放研究。
大型語言模型 英語
O
facebook
6.3M
198
1
基於transformers庫的預訓練模型,適用於多種NLP任務
大型語言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多語言大語言模型系列,包含8B、70B和405B參數規模,支持8種語言和代碼生成,優化了多語言對話場景。
大型語言模型
Transformers 支持多種語言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基礎版是由Google開發的文本到文本轉換Transformer模型,參數規模2.2億,支持多語言NLP任務。
大型語言模型 支持多種語言
T
google-t5
5.4M
702
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98