Exhubert
模型概述
模型特點
模型能力
使用案例
🚀 ExHuBERT:通過塊擴展和在37個情感數據集上微調來增強HuBERT
ExHuBERT模型在EmoSet++上對HuBERT Large進行了微調並擴展了骨幹網絡。EmoSet++包含37個數據集,總計150,907個樣本,總時長達到119.5小時。該模型可用於語音情感識別,為情感計算領域提供了強大的工具。
🚀 快速開始
本模型期望輸入的是重採樣至16 kHz、時長為3秒的原始波形。原始的6個輸出類別是低/高喚醒度與負性/中性/正性效價的組合。更多詳細信息可查看對應的論文。
✨ 主要特性
- 基於HuBERT Large進行微調與骨幹網絡擴展。
- 在包含37個數據集的EmoSet++上訓練,數據豐富。
- 適用於語音情感識別任務。
📦 安裝指南
文檔未提及安裝步驟,可參考transformers
庫的官方安裝指南進行安裝。
💻 使用示例
基礎用法
import torch
import torch.nn as nn
from transformers import AutoModelForAudioClassification, Wav2Vec2FeatureExtractor
# CONFIG and MODEL SETUP
model_name = 'amiriparian/ExHuBERT'
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960")
model = AutoModelForAudioClassification.from_pretrained(model_name, trust_remote_code=True,
revision="b158d45ed8578432468f3ab8d46cbe5974380812")
# Freezing half of the encoder for further transfer learning
model.freeze_og_encoder()
sampling_rate = 16000
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Example application from a local audiofile
import numpy as np
import librosa
import torch.nn.functional as F
# Sample taken from the Toronto emotional speech set (TESS) https://tspace.library.utoronto.ca/handle/1807/24487
waveform, sr_wav = librosa.load("YAF_date_angry.wav")
# Max Padding to 3 Seconds at 16k sampling rate for the best results
waveform = feature_extractor(waveform, sampling_rate=sampling_rate,padding = 'max_length',max_length = 48000)
waveform = waveform['input_values'][0]
waveform = waveform.reshape(1, -1)
waveform = torch.from_numpy(waveform).to(device)
with torch.no_grad():
output = model(waveform)
output = F.softmax(output.logits, dim = 1)
output = output.detach().cpu().numpy().round(2)
print(output)
# [[0. 0. 0. 1. 0. 0.]]
# Low | High Arousal
# Neg. Neut. Pos. | Neg. Neut. Pos Valence
# Disgust, Neutral, Kind| Anger, Surprise, Joy Example emotions
高級用法
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import librosa
import io
from transformers import AutoModelForAudioClassification, Wav2Vec2FeatureExtractor
# CONFIG and MODEL SETUP
model_name = 'amiriparian/ExHuBERT'
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960")
model = AutoModelForAudioClassification.from_pretrained(model_name, trust_remote_code=True,
revision="b158d45ed8578432468f3ab8d46cbe5974380812")
# Replacing Classifier layer
model.classifier = nn.Linear(in_features=256, out_features=7)
# Freezing the original encoder layers and feature encoder (as in the paper) for further transfer learning
model.freeze_og_encoder()
model.freeze_feature_encoder()
model.train()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Define a custom dataset class
class EmotionDataset(Dataset):
def __init__(self, dataframe, feature_extractor, max_length):
self.dataframe = dataframe
self.feature_extractor = feature_extractor
self.max_length = max_length
def __len__(self):
return len(self.dataframe)
def __getitem__(self, idx):
row = self.dataframe.iloc[idx]
# emotion = torch.tensor(row['label'], dtype=torch.int64) # For the IEMOCAP example
emotion = torch.tensor(row['emotion'], dtype=torch.int64) # EmoDB specific
# Decode audio bytes from the Huggingface dataset with librosa
audio_bytes = row['audio']['bytes']
audio_buffer = io.BytesIO(audio_bytes)
audio_data, samplerate = librosa.load(audio_buffer, sr=16000)
# Use the feature extractor to preprocess the audio. Padding/Truncating to 3 seconds gives better results
audio_features = self.feature_extractor(audio_data, sampling_rate=16000, return_tensors="pt", padding="max_length",
truncation=True, max_length=self.max_length)
audio = audio_features['input_values'].squeeze(0)
return audio, emotion
# Load your DataFrame. Samples are shown for EmoDB and IEMOCAP from the Huggingface Hub
df = pd.read_parquet("hf://datasets/renumics/emodb/data/train-00000-of-00001-cf0d4b1ae18136ff.parquet")
# splits = {'session1': 'data/session1-00000-of-00001-04e11ca668d90573.parquet', 'session2': 'data/session2-00000-of-00001-f6132100b374cb18.parquet', 'session3': 'data/session3-00000-of-00001-6e102fcb5c1126b4.parquet', 'session4': 'data/session4-00000-of-00001-e39531a7c694b50d.parquet', 'session5': 'data/session5-00000-of-00001-03769060403172ce.parquet'}
# df = pd.read_parquet("hf://datasets/Zahra99/IEMOCAP_Audio/" + splits["session1"])
# Dataset and DataLoader
dataset = EmotionDataset(df, feature_extractor, max_length=3 * 16000)
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
# Training setup
criterion = nn.CrossEntropyLoss()
lr = 1e-5
non_frozen_parameters = [p for p in model.parameters() if p.requires_grad]
optim = torch.optim.AdamW(non_frozen_parameters, lr=lr, betas=(0.9, 0.999), eps=1e-08)
# Function to calculate accuracy
def calculate_accuracy(outputs, targets):
_, predicted = torch.max(outputs, 1)
correct = (predicted == targets).sum().item()
return correct / targets.size(0)
# Training loop
num_epochs = 3
for epoch in range(num_epochs):
model.train()
total_loss = 0.0
total_correct = 0
total_samples = 0
for batch_idx, (inputs, targets) in enumerate(dataloader):
inputs, targets = inputs.to(device), targets.to(device)
optim.zero_grad()
outputs = model(inputs).logits
loss = criterion(outputs, targets)
loss.backward()
optim.step()
total_loss += loss.item()
total_correct += (outputs.argmax(1) == targets).sum().item()
total_samples += targets.size(0)
epoch_loss = total_loss / len(dataloader)
epoch_accuracy = total_correct / total_samples
print(f'Epoch [{epoch + 1}/{num_epochs}], Average Loss: {epoch_loss:.4f}, Average Accuracy: {epoch_accuracy:.4f}')
# Example outputs:
# Epoch [3/3], Average Loss: 0.4572, Average Accuracy: 0.8249 for IEMOCAP
# Epoch [3/3], Average Loss: 0.1511, Average Accuracy: 0.9850 for EmoDB
📚 詳細文檔
EmoSet++用於微調模型的子集
ABC [1] | AD [2] | BES [3] | CASIA [4] | CVE [5] |
Crema - D [6] | DES [7] | DEMoS [8] | EA - ACT [9] | EA - BMW [9] |
EA - WSJ [9] | EMO - DB [10] | EmoFilm [11] | EmotiW - 2014 [12] | EMOVO [13] |
eNTERFACE [14] | ESD [15] | EU - EmoSS [16] | EU - EV [17] | FAU Aibo [18] |
GEMEP [19] | GVESS [20] | IEMOCAP [21] | MES [3] | MESD [22] |
MELD [23] | PPMMK [2] | RAVDESS [24] | SAVEE [25] | ShEMO [26] |
SmartKom [27] | SIMIS [28] | SUSAS [29] | SUBSECO [30] | TESS [31] |
TurkishEmo [2] | Urdu [32] |
引用信息
ExHuBERT已被接受在INTERSPEECH 2024上展示。
@inproceedings{amiriparian24_interspeech,
title = {ExHuBERT: Enhancing HuBERT Through Block Extension and Fine-Tuning on 37 Emotion Datasets},
author = {Shahin Amiriparian and Filip Packań and Maurice Gerczuk and Björn W. Schuller},
year = {2024},
booktitle = {Interspeech 2024},
pages = {2635--2639},
doi = {10.21437/Interspeech.2024-280},
issn = {2958-1796},
}
參考文獻
[1] B. Schuller, D. Arsic, G. Rigoll, M. Wimmer, and B. Radig. Audiovisual Behavior Modeling by Combined Feature Spaces. Proc. ICASSP 2007, Apr. 2007.[2] M. Gerczuk, S. Amiriparian, S. Ottl, and B. W. Schuller. EmoNet: A Transfer Learning Framework for Multi - Corpus Speech Emotion Recognition. IEEE Transactions on Affective Computing, 14(2):1472–1487, Apr. 2023.
[3] T. L. Nwe, S. W. Foo, and L. C. De Silva. Speech emotion recognition using hidden Markov models. Speech Communication, 41(4):603–623, Nov. 2003.
[4] 中國科學院自動化研究所選定的語音情感數據庫(CASIA)。http://www.chineseldc.org/resource_info.php?rid=76 。2024年3月訪問。
[5] P. Liu and M. D. Pell. Recognizing vocal emotions in Mandarin Chinese: A validated database of Chinese vocal emotional stimuli. Behavior Research Methods, 44(4):1042–1051, Dec. 2012.
[6] H. Cao, D. G. Cooper, M. K. Keutmann, R. C. Gur, A. Nenkova, and R. Verma. CREMA - D: Crowd - sourced Emotional Multimodal Actors Dataset. IEEE transactions on affective computing, 5(4):377–390, 2014.
[7] I. S. Engberg, A. V. Hansen, O. K. Andersen, and P. Dalsgaard. Design Recording and Verification of a Danish Emotional Speech Database: Design Recording and Verification of a Danish Emotional Speech Database. EUROSPEECH’97 : 5th European Conference on Speech Communication and Technology, Patras, Rhodes, Greece, 22 - 25 September 1997, pages Vol. 4, pp. 1695–1698, 1997.
[8] E. Parada - Cabaleiro, G. Costantini, A. Batliner, M. Schmitt, and B. W. Schuller. DEMoS: An Italian emotional speech corpus. Language Resources and Evaluation, 54(2):341–383, June 2020.
[9] B. Schuller. Automatische Emotionserkennung Aus Sprachlicher Und Manueller Interaktion. PhD thesis, Technische Universität München, 2006.
[10] F. Burkhardt, A. Paeschke, M. Rolfes, W. F. Sendlmeier, and B. Weiss. A database of German emotional speech. In Interspeech 2005, pages 1517–1520. ISCA, Sept. 2005.
[11] E. Parada - Cabaleiro, G. Costantini, A. Batliner, A. Baird, and B. Schuller. Categorical vs Dimensional Perception of Italian Emotional Speech. In Interspeech 2018, pages 3638–3642. ISCA, Sept. 2018.
[12] A. Dhall, R. Goecke, J. Joshi, K. Sikka, and T. Gedeon. Emotion Recognition In The Wild Challenge 2014: Baseline, Data and Protocol. In Proceedings of the 16th International Conference on Multimodal Interaction, ICMI ’14, pages 461–466, New York, NY, USA, Nov. 2014. Association for Computing Machinery.
[13] G. Costantini, I. Iaderola, A. Paoloni, and M. Todisco. EMOVO Corpus: An Italian Emotional Speech Database. In N. Calzolari, K. Choukri, T. Declerck, H. Loftsson, B. Maegaard, J. Mariani, A. Moreno, J. Odijk, and S. Piperidis, editors, Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), pages 3501–3504, Reykjavik, Iceland, May 2014. European Language Resources Association (ELRA).
[14] O. Martin, I. Kotsia, B. Macq, and I. Pitas. The eNTERFACE’ 05 Audio - Visual Emotion Database. In 22nd International Conference on Data Engineering Workshops (ICDEW’06), pages 8–8, Apr. 2006.
[15] K. Zhou, B. Sisman, R. Liu, and H. Li. Seen and Unseen emotional style transfer for voice conversion with a new emotional speech dataset, Feb. 2021.
[16] H. O’Reilly, D. Pigat, S. Fridenson, S. Berggren, S. Tal, O. Golan, S. Bölte, S. Baron - Cohen, and D. Lundqvist. The EU - Emotion Stimulus Set: A validation study. Behavior Research Methods, 48(2):567–576, June 2016.
[17] A. Lassalle, D. Pigat, H. O’Reilly, S. Berggen, S. Fridenson - Hayo, S. Tal, S. Elfström, A. Rade, O. Golan, S. Bölte, S. Baron - Cohen, and D. Lundqvist. The EU - Emotion Voice Database. Behavior Research Methods, 51(2):493–506, Apr. 2019.
[18] A. Batliner, S. Steidl, and E. Noth. Releasing a thoroughly annotated and processed spontaneous emotional database: The FAU Aibo Emotion Corpus. 2008.
[19] K. R. Scherer, T. B¨anziger, and E. Roesch. A Blueprint for Affective Computing: A Sourcebook and Manual. OUP Oxford, Sept. 2010.
[20] R. Banse and K. R. Scherer. Acoustic profiles in vocal emotion expression. Journal of Personality and Social Psychology, 70(3):614–636, 1996.
[21] C. Busso, M. Bulut, C. - C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N. Chang, S. Lee, and S. S. Narayanan. IEMOCAP: Interactive emotional dyadic motion capture database. Language Resources and Evaluation, 42(4):335–359, Dec. 2008.
[22] M. M. Duville, L. M. Alonso - Valerdi, and D. I. Ibarra - Zarate. The Mexican Emotional Speech Database (MESD): Elaboration and assessment based on machine learning. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2021:1644–1647, Nov. 2021.
[23] S. Poria, D. Hazarika, N. Majumder, G. Naik, E. Cambria, and R. Mihalcea. MELD: A Multimodal Multi - Party Dataset for Emotion Recognition in Conversations, June 2019.
[24] S. R. Livingstone and F. A. Russo. The Ryerson Audio - Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PLOS ONE, 13(5):e0196391, May 2018.
[25] S. Haq and P. J. B. Jackson. Speaker - dependent audio - visual emotion recognition. In Proc. AVSP 2009, pages 53–58, 2009.
[26] O. Mohamad Nezami, P. Jamshid Lou, and M. Karami. ShEMO: A large - scale validated database for Persian speech emotion detection. Language Resources and Evaluation, 53(1):1–16, Mar. 2019.
[27] F. Schiel, S. Steininger, and U. T¨urk. The SmartKom Multimodal Corpus at BAS. In M. González Rodríguez and C. P. Suarez Araujo, editors, Proceedings of the Third International Conference on Language Resources and Evaluation (LREC’02), Las Palmas, Canary Islands - Spain, May 2002. European Language Resources Association (ELRA).
[28] B. Schuller, F. Eyben, S. Can, and H. Feussner. Speech in Minimal Invasive Surgery - Towards an Affective Language Resource of Real - life Medical Operations. 2010.
[29] J. H. L. Hansen and S. E. Bou - Ghazale. Getting started with SUSAS: A speech under simulated and actual stress database. In Proc. Eurospeech 1997, pages 1743–1746, 1997.
[30] S. Sultana, M. S. Rahman, M. R. Selim, and M. Z. Iqbal. SUST Bangla Emotional Speech Corpus (SUBESCO): An audio - only emotional speech corpus for Bangla. PLOS ONE, 16(4):e0250173, Apr. 2021.
[31] M. K. Pichora - Fuller and K. Dupuis. Toronto emotional speech set (TESS), Feb. 2020.
[32] S. Latif, A. Qayyum, M. Usman, and J. Qadir. Cross Lingual Speech Emotion Recognition: Urdu vs. Western Languages. In 2018 International Conference on Frontiers of Information Technology (FIT), pages 88–93, Dec. 2018.
📄 許可證
本項目採用CC - BY - NC - SA 4.0許可證。









