🚀 音頻情感識別項目
本項目專注於音頻情感識別,利用先進的深度學習技術對音頻中的情感進行分類,為音頻數據的情感分析提供了高效準確的解決方案。
🚀 快速開始
安裝依賴包
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
💻 使用示例
基礎用法
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
return outputs
高級用法
path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav'
outputs = predict(path, sampling_rate)
print(outputs)
輸出結果:
[{'Emotion': 'anger', 'Score': '78.3%'},
{'Emotion': 'disgust', 'Score': '11.7%'},
{'Emotion': 'fear', 'Score': '5.4%'},
{'Emotion': 'happiness', 'Score': '4.1%'},
{'Emotion': 'sadness', 'Score': '0.5%'}]
📚 詳細文檔
評估指標
以下表格總結了模型在整體和每個類別上的得分。
情感 |
精確率 |
召回率 |
F1分數 |
準確率 |
憤怒 |
0.82 |
1.00 |
0.81 |
|
厭惡 |
0.85 |
0.96 |
0.85 |
|
恐懼 |
0.78 |
0.88 |
0.80 |
|
快樂 |
0.84 |
0.71 |
0.78 |
|
悲傷 |
0.86 |
1.00 |
0.79 |
|
|
|
|
總體 |
0.806 |
Colab Notebook
你可以通過以下鏈接訪問Colab Notebook進行實踐操作:
Colab Notebook
📄 許可證
本項目採用Apache 2.0許可證。