Wav2vec2 Large Xlsr Japanese Hiragana
基於facebook/wav2vec2-large-xlsr-53模型微調的日語語音識別模型,支持平假名輸出
下載量 90
發布時間 : 3/2/2022
模型概述
該模型是針對日語語音識別任務優化的Wav2Vec2模型,能夠將日語語音轉換為平假名文本。
模型特點
平假名輸出
模型輸出為日語平假名格式,便於後續處理
多數據源訓練
使用Common Voice和JSUT日語語音語料庫進行訓練
無需語言模型
可直接使用,無需額外語言模型支持
模型能力
日語語音識別
語音轉文本
平假名轉換
使用案例
語音轉錄
日語語音轉寫
將日語語音內容轉換為平假名文本
WER 24.74%, CER 10.99%
語音助手
日語語音指令識別
識別日語語音指令並轉換為文本
🚀 Wav2Vec2-Large-XLSR-53-Japanese
本項目是在日語數據集上對 facebook/wav2vec2-large-xlsr-53 進行微調得到的模型。使用了 Common Voice 和東京大學猿渡研究室的日語語音語料庫 JSUT 進行訓練。使用該模型時,請確保語音輸入的採樣率為 16kHz。
🚀 快速開始
本模型可直接使用(無需語言模型),具體步驟如下。
✨ 主要特性
- 數據集:使用了 Common Voice 和 JSUT 日語語音語料庫進行訓練。
- 評估指標:在 Common Voice 日語測試數據上,測試詞錯誤率(WER)為 24.74%,測試字符錯誤率(CER)為 10.99%。
📦 安裝指南
運行以下命令安裝所需依賴:
!pip install mecab-python3
!pip install unidic-lite
!pip install pykakasi
!python -m unidic download
💻 使用示例
基礎用法
import torch
import torchaudio
import librosa
from datasets import load_dataset
import MeCab
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
# config
wakati = MeCab.Tagger("-Owakati")
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\、\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\。\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\「\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\」\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\…\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\・]'
kakasi = pykakasi.kakasi()
kakasi.setMode("J","H")
kakasi.setMode("K","H")
kakasi.setMode("r","Hepburn")
conv = kakasi.getConverter()
# load data, processor and model
test_dataset = load_dataset("common_voice", "ja", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hỉragana")
model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hỉragana")
resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000)
# Preprocessing the datasets.
def speech_file_to_array_fn(batch):
batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip())
batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
高級用法
在 Common Voice 日語測試數據上評估模型:
import torch
import librosa
import torchaudio
from datasets import load_dataset, load_metric
import MeCab
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
#config
wakati = MeCab.Tagger("-Owakati")
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\、\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\。\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\「\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\」\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\…\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\・]'
kakasi = pykakasi.kakasi()
kakasi.setMode("J","H")
kakasi.setMode("K","H")
kakasi.setMode("r","Hepburn")
conv = kakasi.getConverter()
# load data, processor and model
test_dataset = load_dataset("common_voice", "ja", split="test")
wer = load_metric("wer")
cer = load_metric("cer")
processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hỉragana")
model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hỉragana")
model.to("cuda")
resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000)
# Preprocessing the datasets.
def speech_file_to_array_fn(batch):
batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip())
batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# evaluate function
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
📚 詳細文檔
測試結果
- WER:24.74%
- CER:10.99%
訓練信息
使用了 Common Voice 的 train
、validation
數據集以及日語語音語料庫數據集進行訓練。
📄 許可證
本項目採用 Apache-2.0 許可證。
信息表格
屬性 | 詳情 |
---|---|
模型類型 | Wav2Vec2-Large-XLSR-53-Japanese |
訓練數據 | Common Voice、JSUT 日語語音語料庫 |
評估指標 | WER: 24.74%,CER: 10.99% |
許可證 | Apache-2.0 |
Voice Activity Detection
MIT
基於pyannote.audio 2.1版本的語音活動檢測模型,用於識別音頻中的語音活動時間段
語音識別
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
這是一個針對葡萄牙語語音識別任務微調的XLSR-53大模型,基於Common Voice 6.1數據集訓練,支持葡萄牙語語音轉文本。
語音識別 其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先進自動語音識別(ASR)和語音翻譯模型,在超過500萬小時的標註數據上訓練,具有強大的跨數據集和跨領域泛化能力。
語音識別 支持多種語言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI開發的最先進的自動語音識別(ASR)和語音翻譯模型,經過超過500萬小時標記數據的訓練,在零樣本設置下展現出強大的泛化能力。
語音識別
Transformers 支持多種語言

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的俄語語音識別模型,支持16kHz採樣率的語音輸入
語音識別 其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的中文語音識別模型,支持16kHz採樣率的語音輸入。
語音識別 中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53微調的荷蘭語語音識別模型,在Common Voice和CSS10數據集上訓練,支持16kHz音頻輸入。
語音識別 其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的日語語音識別模型,支持16kHz採樣率的語音輸入
語音識別 日語
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基於Hugging Face預訓練模型的文本與音頻強制對齊工具,支持多種語言,內存效率高
語音識別
Transformers 支持多種語言

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53微調的阿拉伯語語音識別模型,在Common Voice和阿拉伯語語音語料庫上訓練
語音識別 阿拉伯語
W
jonatasgrosman
2.3M
37
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98