🚀 格魯吉亞語Wav2Vec2-Large-XLSR-53模型
本項目基於格魯吉亞語對 facebook/wav2vec2-large-xlsr-53 模型進行了微調,使用的數據集為 Common Voice。使用此模型時,請確保輸入的語音採樣率為 16kHz。
數據集
評估指標
標籤
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
許可證
apache-2.0
模型信息
模型名稱 |
任務 |
數據集 |
評估指標 |
值 |
Georgian WAV2VEC2 Daytona |
語音識別(automatic-speech-recognition) |
Common Voice ka |
Test WER |
48.34 |
🚀 快速開始
本模型是基於Transformer架構的語音識別模型,通過在格魯吉亞語數據集上微調預訓練模型,實現了對格魯吉亞語語音的準確識別。
✨ 主要特性
💻 使用示例
基礎用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ka", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("Temur/wav2vec2-Georgian-Daytona")
model = Wav2Vec2ForCTC.from_pretrained("Temur/wav2vec2-Georgian-Daytona")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
📚 詳細文檔
評估
可以按照以下方式在 Common Voice 的格魯吉亞語測試數據上對模型進行評估:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ka", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("Temur/wav2vec2-Georgian-Daytona")
model = Wav2Vec2ForCTC.from_pretrained("Temur/wav2vec2-Georgian-Daytona")
model.to("cuda")
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
測試結果:48.34 %
訓練
Common Voice 的 train
、validation
等數據集用於模型訓練。訓練腳本可參考 此處。
📄 許可證
本項目採用 apache-2.0 許可證。