🚀 蒙古語Wav2Vec2-Large-XLSR-53模型
本模型基於Common Voice數據集,對facebook/wav2vec2-large-xlsr-53進行了蒙古語微調。使用該模型時,請確保輸入的語音採樣率為16kHz。
✨ 主要特性
- 數據集:使用Common Voice數據集進行訓練和評估。
- 評估指標:使用字錯率(WER)進行評估。
- 適用場景:適用於蒙古語的自動語音識別任務。
📦 安裝指南
文檔未提及具體安裝步驟,可參考Hugging Face相關庫的安裝方法,如transformers
、torch
、torchaudio
、datasets
等庫:
pip install transformers torch torchaudio datasets
💻 使用示例
基礎用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "mn", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("預測結果:", processor.batch_decode(predicted_ids))
print("參考結果:", test_dataset["sentence"][:2])
📚 詳細文檔
評估模型
可以使用以下代碼在Common Voice的蒙古語測試數據上評估模型:
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/mn.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/mn/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/mn/clips/"
def clean_sentence(sent):
sent = sent.lower()
sent = "".join(ch if ch.isalpha() else " " for ch in sent)
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("字錯率 (WER): {:2f}%".format(100 * wer.compute(predictions=preds, references=targets)))
測試結果:38.53 %
訓練信息
訓練使用了Common Voice的train
和validation
數據集。
📄 許可證
本項目採用Apache 2.0許可證。
📋 模型信息
屬性 |
詳情 |
模型類型 |
基於Wav2Vec2-Large-XLSR-53微調的蒙古語自動語音識別模型 |
訓練數據 |
Common Voice蒙古語數據集的訓練集和驗證集 |
評估指標 |
字錯率(WER) |
測試WER |
38.53% |