🚀 Wav2Vec2-Large-XLSR-53-Romansh Sursilv
本項目基於 Common Voice 數據集,在 Romansh Sursilv 語言上對 facebook/wav2vec2-large-xlsr-53 模型進行了微調。使用此模型時,請確保語音輸入的採樣率為 16kHz。
🚀 快速開始
模型信息
屬性 |
詳情 |
模型類型 |
微調後的 Wav2Vec2-Large-XLSR-53 模型 |
訓練數據 |
Common Voice rm - sursilv 數據集 |
評估指標 |
字錯誤率(WER) |
許可證 |
Apache - 2.0 |
模型表現
任務 |
數據集 |
評估指標 |
值 |
語音識別 |
Common Voice rm - sursilv |
測試 WER |
25.78 |
模型名稱
Anurag Singh XLSR Wav2Vec2 Large 53 Romansh Sursilv
✨ 主要特性
💻 使用示例
基礎用法
模型可以直接(不使用語言模型)按如下方式使用:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "rm-sursilv", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
評估用法
模型可以在 Common Voice 的 Romansh Sursilv 測試數據上按如下方式進行評估:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "rm-sursilv", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
測試結果:25.78 %
📚 詳細文檔
訓練信息
訓練使用了 Common Voice 的 train
和 validation
數據集。
📄 許可證
本模型使用 Apache - 2.0 許可證。