🚀 ptt5-v2-base
ptt5-v2模型是專門為葡萄牙語定製的預訓練T5模型,它基於谷歌原始的檢查點繼續訓練,模型大小從t5-small到t5-3B不等。這些檢查點被用於訓練葡萄牙語的MonoT5重排器,你可以在它們的HuggingFace集合中找到。如需瞭解更多關於預訓練過程的信息,請參考我們的論文ptt5-v2: A Closer Look at Continued Pretraining of T5 Models for the Portuguese Language。
🚀 快速開始
模型信息
屬性 |
詳情 |
數據集 |
allenai/c4、legacy-datasets/mc4 |
語言 |
葡萄牙語(pt) |
任務類型 |
文本到文本生成 |
基礎模型 |
google-t5/t5-base |
許可證 |
apache-2.0 |
模型介紹
ptt5-v2模型是專門為葡萄牙語定製的預訓練T5模型,它在谷歌原始檢查點的基礎上繼續訓練,模型大小涵蓋從t5-small到t5-3B。這些檢查點用於訓練葡萄牙語的MonoT5重排器,可在其HuggingFace集合中找到。關於預訓練過程的更多信息,請參考我們的論文ptt5-v2: A Closer Look at Continued Pretraining of T5 Models for the Portuguese Language。
💻 使用示例
基礎用法
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/ptt5-v2-base")
model = T5ForConditionalGeneration.from_pretrained("unicamp-dl/ptt5-v2-base")
📄 許可證
本項目採用apache-2.0
許可證。
📚 詳細文檔
引用信息
如果你使用了我們的模型,請按照以下格式進行引用:
@article{piau2024ptt5v2,
title={ptt5-v2: A Closer Look at Continued Pretraining of T5 Models for the Portuguese Language},
author={Marcos Piau and Roberto Lotufo and Rodrigo Nogueira},
year={2024},
eprint={2406.10806},
archivePrefix={arXiv},
primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'}
}