🚀 韓語多任務句子嵌入模型ko - sroberta - multitask
本模型是基於 sentence - transformers 的模型,它能夠將句子和段落映射到 768 維的密集向量空間,可用於聚類、語義搜索等任務。
🚀 快速開始
📦 安裝指南
若已安裝 sentence - transformers,使用此模型將十分便捷:
pip install -U sentence-transformers
💻 使用示例
基礎用法
使用 sentence - transformers
庫調用模型:
from sentence_transformers import SentenceTransformer
sentences = ["안녕하세요?", "한국어 문장 임베딩을 위한 버트 모델입니다."]
model = SentenceTransformer('jhgan/ko-sroberta-multitask')
embeddings = model.encode(sentences)
print(embeddings)
高級用法
若未安裝 sentence - transformers,可按以下方式使用模型:首先將輸入數據傳入 Transformer 模型,然後對上下文詞嵌入應用合適的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('jhgan/ko-sroberta-multitask')
model = AutoModel.from_pretrained('jhgan/ko-sroberta-multitask')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
🔍 評估結果
該模型在 KorSTS、KorNLI 訓練數據集上進行多任務訓練後,使用 KorSTS 評估數據集進行評估,結果如下:
評估指標 |
數值 |
Cosine Pearson |
84.77 |
Cosine Spearman |
85.60 |
Euclidean Pearson |
83.71 |
Euclidean Spearman |
84.40 |
Manhattan Pearson |
83.70 |
Manhattan Spearman |
84.38 |
Dot Pearson |
82.42 |
Dot Spearman |
82.33 |
🔧 技術細節
訓練參數
- 數據加載器 1:
- 類型:
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
- 長度:8885
- 參數:
{'batch_size': 64}
- 損失函數 1:
- 類型:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
- 參數:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
- 數據加載器 2:
- 類型:
torch.utils.data.dataloader.DataLoader
- 長度:719
- 參數:
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
- 損失函數 2:
- 類型:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
訓練方法參數
{
"epochs": 5,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 360,
"weight_decay": 0.01
}
🏗️ 完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 引用與作者
- Ham, J., Choe, Y. J., Park, K., Choi, I., & Soh, H. (2020). Kornli and korsts: New benchmark datasets for korean natural language understanding. arXiv preprint arXiv:2004.03289
- Reimers, Nils and Iryna Gurevych. “Sentence - BERT: Sentence Embeddings using Siamese BERT - Networks.” ArXiv abs/1908.10084 (2019)
- Reimers, Nils and Iryna Gurevych. “Making Monolingual Sentence Embeddings Multilingual Using Knowledge Distillation.” EMNLP (2020).