Gte Small
模型概述
GTE-small 是一個基於句子轉換器架構的文本嵌入模型,主要用於生成高質量的句子級嵌入表示,支持多種下游NLP任務。
模型特點
多任務支持
支持多種自然語言處理任務,包括分類、檢索和聚類等。
高效性能
在多個基準測試中表現出色,特別是在文本分類任務上。
通用文本嵌入
能夠生成高質量的句子級嵌入表示,適用於多種下游應用。
模型能力
句子相似度計算
文本分類
信息檢索
文本聚類
語義文本相似度評估
使用案例
電子商務
產品評論分類
對亞馬遜產品評論進行情感極性分類
在AmazonPolarity分類任務上達到91.8%的準確率
反事實評論識別
識別亞馬遜平臺上的反事實評論
在AmazonCounterfactual分類任務上達到73.2%的準確率
學術研究
論文聚類
對arXiv和biorxiv論文進行主題聚類
在arXiv論文聚類任務上V-measure達到47.9
問答系統
重複問題檢測
識別AskUbuntu論壇中的重複問題
重排序任務中平均精度達到61.7
🚀 gte-small
General Text Embeddings (GTE) 模型是由阿里巴巴達摩院訓練的一系列模型,主要基於 BERT 框架,目前提供三種不同大小的模型,包括 GTE-large、GTE-base 和 GTE-small。這些模型在大規模的相關文本對語料庫上進行訓練,覆蓋了廣泛的領域和場景,可應用於文本嵌入的各種下游任務,如信息檢索、語義文本相似度、文本重排序等。Towards General Text Embeddings with Multi-stage Contrastive Learning
🚀 快速開始
General Text Embeddings (GTE) 模型主要基於 BERT 框架,在大規模相關文本對語料庫上訓練,適用於信息檢索、語義文本相似度、文本重排序等多種文本嵌入下游任務。
代碼示例
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
"what is the capital of China?",
"how to implement quick sort in python?",
"Beijing",
"sorting algorithms"
]
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-small")
model = AutoModel.from_pretrained("thenlper/gte-small")
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
結合 sentence-transformers 使用
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
sentences = ['That is a happy person', 'That is a very happy person']
model = SentenceTransformer('thenlper/gte-large')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
✨ 主要特性
- 多尺寸模型:提供三種不同大小的模型,包括 GTE-large、GTE-base 和 GTE-small,可根據不同需求選擇。
- 廣泛適用性:在大規模的相關文本對語料庫上進行訓練,覆蓋了廣泛的領域和場景,可應用於文本嵌入的各種下游任務,包括信息檢索、語義文本相似度、文本重排序等。
📦 安裝指南
文檔未提及具體安裝命令,故跳過此章節。
💻 使用示例
基礎用法
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
"what is the capital of China?",
"how to implement quick sort in python?",
"Beijing",
"sorting algorithms"
]
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-small")
model = AutoModel.from_pretrained("thenlper/gte-small")
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
高級用法
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
sentences = ['That is a happy person', 'That is a very happy person']
model = SentenceTransformer('thenlper/gte-large')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
📚 詳細文檔
指標
我們在 MTEB 基準測試中比較了 GTE 模型與其他流行文本嵌入模型的性能。如需更詳細的比較結果,請參考 MTEB 排行榜。
模型名稱 | 模型大小 (GB) | 維度 | 序列長度 | 平均值 (56) | 聚類 (11) | 成對分類 (3) | 重排序 (4) | 檢索 (15) | STS (10) | 摘要 (1) | 分類 (12) |
---|---|---|---|---|---|---|---|---|---|---|---|
gte-large | 0.67 | 1024 | 512 | 63.13 | 46.84 | 85.00 | 59.13 | 52.22 | 83.35 | 31.66 | 73.33 |
gte-base | 0.22 | 768 | 512 | 62.39 | 46.2 | 84.57 | 58.61 | 51.14 | 82.3 | 31.17 | 73.01 |
e5-large-v2 | 1.34 | 1024 | 512 | 62.25 | 44.49 | 86.03 | 56.61 | 50.56 | 82.05 | 30.19 | 75.24 |
e5-base-v2 | 0.44 | 768 | 512 | 61.5 | 43.80 | 85.73 | 55.91 | 50.29 | 81.05 | 30.28 | 73.84 |
gte-small | 0.07 | 384 | 512 | 61.36 | 44.89 | 83.54 | 57.7 | 49.46 | 82.07 | 30.42 | 72.31 |
text-embedding-ada-002 | - | 1536 | 8192 | 60.99 | 45.9 | 84.89 | 56.32 | 49.25 | 80.97 | 30.8 | 70.93 |
e5-small-v2 | 0.13 | 384 | 512 | 59.93 | 39.92 | 84.67 | 54.32 | 49.04 | 80.39 | 31.16 | 72.94 |
sentence-t5-xxl | 9.73 | 768 | 512 | 59.51 | 43.72 | 85.06 | 56.42 | 42.24 | 82.63 | 30.08 | 73.42 |
all-mpnet-base-v2 | 0.44 | 768 | 514 | 57.78 | 43.69 | 83.04 | 59.36 | 43.81 | 80.28 | 27.49 | 65.07 |
sgpt-bloom-7b1-msmarco | 28.27 | 4096 | 2048 | 57.59 | 38.93 | 81.9 | 55.65 | 48.22 | 77.74 | 33.6 | 66.19 |
all-MiniLM-L12-v2 | 0.13 | 384 | 512 | 56.53 | 41.81 | 82.41 | 58.44 | 42.69 | 79.8 | 27.9 | 63.21 |
all-MiniLM-L6-v2 | 0.09 | 384 | 512 | 56.26 | 42.35 | 82.37 | 58.04 | 41.95 | 78.9 | 30.81 | 63.05 |
contriever-base-msmarco | 0.44 | 768 | 512 | 56.00 | 41.1 | 82.54 | 53.14 | 41.88 | 76.51 | 30.36 | 66.68 |
sentence-t5-base | 0.22 | 768 | 512 | 55.27 | 40.21 | 85.18 | 53.09 | 33.63 | 81.14 | 31.39 | 69.81 |
侷限性
此模型僅適用於英文文本,並且任何長文本將被截斷為最多 512 個標記。
引用
如果您發現我們的論文或模型有幫助,請考慮按以下方式引用:
@article{li2023towards,
title={Towards general text embeddings with multi-stage contrastive learning},
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
journal={arXiv preprint arXiv:2308.03281},
year={2023}
}
🔧 技術細節
文檔未提供具體的技術實現細節,故跳過此章節。
📄 許可證
本項目採用 MIT 許可證。
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98