🚀 PaECTER - 專利相似度模型
PaECTER(使用引用信息感知Transformer的專利嵌入)是一個專利相似度模型。它基於谷歌的專利BERT作為基礎模型,能夠從專利文本中生成1024維的密集向量嵌入。這些向量封裝了給定專利文本的語義本質,非常適合用於與專利分析相關的各種下游任務。
論文鏈接:https://arxiv.org/pdf/2402.19411
✨ 主要特性
🚀 快速開始
📦 安裝指南
若要使用此模型,你需要安裝 sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基礎用法(使用Sentence-Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('mpi-inno-comp/paecter')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(使用HuggingFace Transformers)
若未安裝 sentence-transformers,可以按以下方式使用該模型:首先,將輸入數據傳入Transformer模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('mpi-inno-comp/paecter')
model = AutoModel.from_pretrained('mpi-inno-comp/paecter')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt', max_length=512)
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
評估結果
該模型的評估詳情可在我們的論文 PaECTER: Patent-level Representation Learning using Citation-informed Transformers 中查看。
訓練細節
該模型使用以下參數進行訓練:
數據加載器:
torch.utils.data.dataloader.DataLoader
,長度為318750,參數如下:
{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
損失函數:
sentence_transformers.losses.CustomTripletLoss.CustomTripletLoss
,參數如下:
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 1}
fit()
方法的參數:
{
"epochs": 1,
"evaluation_steps": 4000,
"evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 1e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 31875.0,
"weight_decay": 0.01
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
引用與作者
@misc{ghosh2024paecter,
title={PaECTER: Patent-level Representation Learning using Citation-informed Transformers},
author={Mainak Ghosh and Sebastian Erhardt and Michael E. Rose and Erik Buunk and Dietmar Harhoff},
year={2024},
eprint={2402.19411},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
📄 許可證
本項目採用Apache 2.0許可證。
屬性 |
詳情 |
模型類型 |
專利相似度模型 |
訓練數據 |
mpi-inno-comp/paecter_dataset |