🚀 PaECTER - 专利相似度模型
PaECTER(使用引用信息感知Transformer的专利嵌入)是一个专利相似度模型。它基于谷歌的专利BERT作为基础模型,能够从专利文本中生成1024维的密集向量嵌入。这些向量封装了给定专利文本的语义本质,非常适合用于与专利分析相关的各种下游任务。
论文链接:https://arxiv.org/pdf/2402.19411
✨ 主要特性
🚀 快速开始
📦 安装指南
若要使用此模型,你需要安装 sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基础用法(使用Sentence-Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('mpi-inno-comp/paecter')
embeddings = model.encode(sentences)
print(embeddings)
高级用法(使用HuggingFace Transformers)
若未安装 sentence-transformers,可以按以下方式使用该模型:首先,将输入数据传入Transformer模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('mpi-inno-comp/paecter')
model = AutoModel.from_pretrained('mpi-inno-comp/paecter')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt', max_length=512)
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
该模型的评估详情可在我们的论文 PaECTER: Patent-level Representation Learning using Citation-informed Transformers 中查看。
训练细节
该模型使用以下参数进行训练:
数据加载器:
torch.utils.data.dataloader.DataLoader
,长度为318750,参数如下:
{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数:
sentence_transformers.losses.CustomTripletLoss.CustomTripletLoss
,参数如下:
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 1}
fit()
方法的参数:
{
"epochs": 1,
"evaluation_steps": 4000,
"evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 1e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 31875.0,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
引用与作者
@misc{ghosh2024paecter,
title={PaECTER: Patent-level Representation Learning using Citation-informed Transformers},
author={Mainak Ghosh and Sebastian Erhardt and Michael E. Rose and Erik Buunk and Dietmar Harhoff},
year={2024},
eprint={2402.19411},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
📄 许可证
本项目采用Apache 2.0许可证。
属性 |
详情 |
模型类型 |
专利相似度模型 |
训练数据 |
mpi-inno-comp/paecter_dataset |