Bge M3 Msmarco V3 Sbert
這是一個從BAAI/bge-m3微調而來的sentence-transformers模型,用於將句子和段落映射到1024維稠密向量空間,支持語義文本相似度、語義搜索等任務。
下載量 20
發布時間 : 3/3/2025
模型概述
該模型專為語義文本相似度和語義搜索任務設計,能夠將文本轉換為高維向量表示,適用於信息檢索、文本分類和聚類等場景。
模型特點
高維向量表示
將句子和段落映射到1024維稠密向量空間,捕捉深層語義特徵
長文本支持
最大支持8192個標記的序列長度,適合處理長文檔
高效相似度計算
使用餘弦相似度快速計算文本之間的語義相似度
模型能力
語義文本相似度計算
語義搜索
複述挖掘
文本分類
文本聚類
使用案例
信息檢索
問答系統
通過計算問題與候選答案的語義相似度,找到最佳匹配答案
內容推薦
相似內容推薦
基於用戶當前閱讀內容,推薦語義相似的其他內容
🚀 基於BAAI/bge-m3的句子轉換器
這是一個基於 sentence-transformers 庫,從 BAAI/bge-m3 微調而來的模型。它可以將句子和段落映射到一個1024維的密集向量空間,可用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等任務。
🚀 快速開始
直接使用(Sentence Transformers)
首先,安裝 Sentence Transformers 庫:
pip install -U sentence-transformers
然後,你可以加載該模型並進行推理:
from sentence_transformers import SentenceTransformer
# 從 🤗 Hub 下載模型
model = SentenceTransformer("BlackBeenie/bge-m3-msmarco-v3-sbert")
# 運行推理
sentences = [
'who is christopher kyle',
'Chris Kyle American Sniper. Christopher Scott Kyle was born and raised in Texas and was a United States Navy SEAL from 1999 to 2009. He is currently known as the most successful sniper in American military history. According to his book American Sniper, he had 160 confirmed kills (which was from 255 claimed kills).',
"'American Sniper' Chris Kyle's wife thanks audiences for 'watching the hard stuff'. Taya Kyle has told of her gratitude to audiences for supporting the film about her dead husband Chris Kyle, a Navy Seal played by Bradley Cooper.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# 獲取嵌入向量的相似度分數
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 語義映射:能夠將句子和段落映射到1024維的密集向量空間,方便進行語義相關任務。
- 多任務支持:可用於語義文本相似度計算、語義搜索、釋義挖掘、文本分類、聚類等多種任務。
📦 安裝指南
安裝 Sentence Transformers 庫:
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import SentenceTransformer
# 從 🤗 Hub 下載模型
model = SentenceTransformer("BlackBeenie/bge-m3-msmarco-v3-sbert")
# 運行推理
sentences = [
'who is christopher kyle',
'Chris Kyle American Sniper. Christopher Scott Kyle was born and raised in Texas and was a United States Navy SEAL from 1999 to 2009. He is currently known as the most successful sniper in American military history. According to his book American Sniper, he had 160 confirmed kills (which was from 255 claimed kills).',
"'American Sniper' Chris Kyle's wife thanks audiences for 'watching the hard stuff'. Taya Kyle has told of her gratitude to audiences for supporting the film about her dead husband Chris Kyle, a Navy Seal played by Bradley Cooper.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# 獲取嵌入向量的相似度分數
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 詳細文檔
模型詳情
模型描述
屬性 | 詳情 |
---|---|
模型類型 | 句子轉換器 |
基礎模型 | BAAI/bge-m3 |
最大序列長度 | 8192 個標記 |
輸出維度 | 1024 維 |
相似度函數 | 餘弦相似度 |
模型來源
- 文檔:Sentence Transformers 文檔
- 倉庫:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Sentence Transformers
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
訓練詳情
訓練數據集
未命名數據集
- 大小:498,970 個訓練樣本
- 列:
sentence_0
、sentence_1
和sentence_2
- 基於前 1000 個樣本的近似統計信息:
sentence_0 sentence_1 sentence_2 類型 字符串 字符串 字符串 詳情 - 最小:4 個標記
- 平均:9.93 個標記
- 最大:37 個標記
- 最小:17 個標記
- 平均:90.01 個標記
- 最大:239 個標記
- 最小:16 個標記
- 平均:86.47 個標記
- 最大:229 個標記
- 樣本:
sentence_0 sentence_1 sentence_2 how much does it cost to paint a interior house
Interior House Painting Cost Factors. Generally, it will take a minimum of two gallons of paint to cover a room. At the highest end, paint will cost anywhere between $30 and $60 per gallon and come in three different finishes: flat, semi-gloss or high-gloss.Flat finishes are the least shiny and are best suited for areas requiring frequent cleaning.rovide a few details about your project and receive competitive quotes from local pros. The average national cost to paint a home interior is $1,671, with most homeowners spending between $966 and $2,426.
Question DetailsAsked on 3/12/2014. Guest_... How much does it cost per square foot to paint the interior of a house? We just bought roughly a 1500 sg ft townhouse and want to get the entire house, including ceilings painted (including a roughly 400 sq ft finished basement not included in square footage).
when is s corp taxes due
If you form a corporate entity for your small business, regardless of whether it's taxed as a C or S corporation, a tax return must be filed with the Internal Revenue Service on its due date each year. Corporate tax returns are always due on the 15th day of the third month following the close of the tax year. The actual day that the tax return filing deadline falls on, however, isn't the same for every corporation.
But if you havenât, donât panic: the majority of forms arenât due quite yet. Most tax forms have an annual January 31 due date. Your tax forms are considered on time if the form is properly addressed and mailed on or before that date. If the regular due date falls on a Saturday, Sunday, or legal holiday â which is the case in 2015 for both January and February due dates â issuers have until the next business day.
what are disaccharides
Disaccharides are formed when two monosaccharides are joined together and a molecule of water is removed, a process known as dehydration reaction. For example; milk sugar (lactose) is made from glucose and galactose whereas the sugar from sugar cane and sugar beets (sucrose) is made from glucose and fructose.altose, another notable disaccharide, is made up of two glucose molecules. The two monosaccharides are bonded via a dehydration reaction (also called a condensation reaction or dehydration synthesis) that leads to the loss of a molecule of water and formation of a glycosidic bond.
Other disaccharides include (diagrams p. 364): Sucrose, common table sugar, has a glycosidic bond linking the anomeric hydroxyls of glucose and fructose. Because the configuration at the anomeric carbon of glucose is a (O points down from the ring), the linkage is designated a(12).
- 損失:
MultipleNegativesRankingLoss
,參數如下:{ "scale": 20.0, "similarity_fct": "cos_sim" }
訓練超參數
非默認超參數
eval_strategy
:按步驟評估per_device_train_batch_size
:32per_device_eval_batch_size
:32num_train_epochs
:5fp16
:Truemulti_dataset_batch_sampler
:輪詢
所有超參數
點擊展開
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
訓練日誌
點擊展開
輪次 | 步驟 | 訓練損失 |
---|---|---|
0.0321 | 500 | 0.3086 |
0.0641 | 1000 | 0.2339 |
0.0962 | 1500 | 0.2289 |
0.1283 | 2000 | 0.2262 |
0.1603 | 2500 | 0.2213 |
0.1924 | 3000 | 0.2158 |
0.2245 | 3500 | 0.2101 |
0.2565 | 4000 | 0.2082 |
0.2886 | 4500 | 0.2107 |
0.3207 | 5000 | 0.2015 |
0.3527 | 5500 | 0.2023 |
0.3848 | 6000 | 0.201 |
0.4169 | 6500 | 0.1974 |
0.4489 | 7000 | 0.191 |
0.4810 | 7500 | 0.1956 |
0.5131 | 8000 | 0.2 |
0.5451 | 8500 | 0.191 |
0.5772 | 9000 | 0.1888 |
0.6092 | 9500 | 0.1885 |
0.6413 | 10000 | 0.1936 |
0.6734 | 10500 | 0.1944 |
0.7054 | 11000 | 0.1806 |
0.7375 | 11500 | 0.1834 |
0.7696 | 12000 | 0.1853 |
0.8016 | 12500 | 0.1823 |
0.8337 | 13000 | 0.1827 |
0.8658 | 13500 | 0.1821 |
0.8978 | 14000 | 0.1724 |
0.9299 | 14500 | 0.1745 |
0.9620 | 15000 | 0.1776 |
0.9940 | 15500 | 0.1781 |
1.0 | 15593 | - |
1.0261 | 16000 | 0.1133 |
1.0582 | 16500 | 0.0964 |
1.0902 | 17000 | 0.0931 |
1.1223 | 17500 | 0.0947 |
1.1544 | 18000 | 0.097 |
1.1864 | 18500 | 0.0977 |
1.2185 | 19000 | 0.096 |
1.2506 | 19500 | 0.1005 |
1.2826 | 20000 | 0.1008 |
1.3147 | 20500 | 0.0998 |
1.3468 | 21000 | 0.0972 |
1.3788 | 21500 | 0.0992 |
1.4109 | 22000 | 0.0994 |
1.4430 | 22500 | 0.1029 |
1.4750 | 23000 | 0.1008 |
1.5071 | 23500 | 0.0985 |
1.5392 | 24000 | 0.1013 |
1.5712 | 24500 | 0.1027 |
1.6033 | 25000 | 0.0988 |
1.6353 | 25500 | 0.0982 |
1.6674 | 26000 | 0.0994 |
1.6995 | 26500 | 0.0998 |
1.7315 | 27000 | 0.0989 |
1.7636 | 27500 | 0.101 |
1.7957 | 28000 | 0.099 |
1.8277 | 28500 | 0.096 |
1.8598 | 29000 | 0.0989 |
1.8919 | 29500 | 0.1011 |
1.9239 | 30000 | 0.0974 |
1.9560 | 30500 | 0.0999 |
1.9881 | 31000 | 0.0976 |
2.0 | 31186 | - |
2.0201 | 31500 | 0.0681 |
2.0522 | 32000 | 0.0478 |
2.0843 | 32500 | 0.0483 |
2.1163 | 33000 | 0.0485 |
2.1484 | 33500 | 0.0472 |
2.1805 | 34000 | 0.0482 |
2.2125 | 34500 | 0.0491 |
2.2446 | 35000 | 0.0484 |
2.2767 | 35500 | 0.0493 |
2.3087 | 36000 | 0.0484 |
2.3408 | 36500 | 0.0503 |
2.3729 | 37000 | 0.0498 |
2.4049 | 37500 | 0.0507 |
2.4370 | 38000 | 0.0502 |
2.4691 | 38500 | 0.0508 |
2.5011 | 39000 | 0.0483 |
2.5332 | 39500 | 0.0486 |
2.5653 | 40000 | 0.0494 |
2.5973 | 40500 | 0.0511 |
2.6294 | 41000 | 0.0508 |
2.6615 | 41500 | 0.0496 |
2.6935 | 42000 | 0.0487 |
2.7256 | 42500 | 0.0497 |
2.7576 | 43000 | 0.0491 |
2.7897 | 43500 | 0.0486 |
2.8218 | 44000 | 0.0503 |
2.8538 | 44500 | 0.0504 |
2.8859 | 45000 | 0.0499 |
2.9180 | 45500 | 0.048 |
2.9500 | 46000 | 0.047 |
2.9821 | 46500 | 0.0497 |
3.0 | 46779 | - |
3.0142 | 47000 | 0.0395 |
3.0462 | 47500 | 0.0247 |
3.0783 | 48000 | 0.0256 |
3.1104 | 48500 | 0.0254 |
3.1424 | 49000 | 0.0247 |
3.1745 | 49500 | 0.0251 |
3.2066 | 50000 | 0.0253 |
3.2386 | 50500 | 0.0263 |
3.2707 | 51000 | 0.0261 |
3.3028 | 51500 | 0.0259 |
3.3348 | 52000 | 0.0256 |
3.3669 | 52500 | 0.0254 |
3.3990 | 53000 | 0.026 |
3.4310 | 53500 | 0.0255 |
3.4631 | 54000 | 0.0255 |
3.4952 | 54500 | 0.0257 |
3.5272 | 55000 | 0.0249 |
3.5593 | 55500 | 0.0251 |
3.5914 | 56000 | 0.026 |
3.6234 | 56500 | 0.0246 |
3.6555 | 57000 | 0.0258 |
3.6876 | 57500 | 0.0266 |
3.7196 | 58000 | 0.0242 |
3.7517 | 58500 | 0.0251 |
3.7837 | 59000 | 0.0243 |
3.8158 | 59500 | 0.0249 |
3.8479 | 60000 | 0.0252 |
3.8799 | 60500 | 0.0251 |
3.9120 | 61000 | 0.025 |
3.9441 | 61500 | 0.0249 |
3.9761 | 62000 | 0.0254 |
4.0 | 62372 | - |
4.0082 | 62500 | 0.0221 |
4.0403 | 63000 | 0.0146 |
4.0723 | 63500 | 0.0146 |
4.1044 | 64000 | 0.0152 |
4.1365 | 64500 | 0.0153 |
4.1685 | 65000 | 0.0144 |
4.2006 | 65500 | 0.0154 |
4.2327 | 66000 | 0.0137 |
4.2647 | 66500 | 0.0145 |
4.2968 | 67000 | 0.0148 |
4.3289 | 67500 | 0.0148 |
4.3609 | 68000 | 0.0142 |
4.3930 | 68500 | 0.0148 |
4.4251 | 69000 | 0.0155 |
4.4571 | 69500 | 0.0148 |
4.4892 | 70000 | 0.0144 |
4.5213 | 70500 | 0.0144 |
4.5533 | 71000 | 0.0148 |
4.5854 | 71500 | 0.015 |
4.6175 | 72000 | 0.0149 |
4.6495 | 72500 | 0.0135 |
4.6816 | 73000 | 0.0142 |
4.7137 | 73500 | 0.0152 |
4.7457 | 74000 | 0.0144 |
4.7778 | 74500 | 0.0143 |
4.8099 | 75000 | 0.0141 |
4.8419 | 75500 | 0.0146 |
4.8740 | 76000 | 0.0142 |
4.9060 | 76500 | 0.0142 |
4.9381 | 77000 | 0.0147 |
4.9702 | 77500 | 0.0145 |
5.0 | 77965 | - |
框架版本
- Python:3.11.11
- Sentence Transformers:3.4.1
- Transformers:4.48.3
- PyTorch:2.5.1+cu124
- Accelerate:1.3.0
- Datasets:3.3.2
- Tokenizers:0.21.0
📄 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98