Bge M3 Msmarco V3 Sbert
这是一个从BAAI/bge-m3微调而来的sentence-transformers模型,用于将句子和段落映射到1024维稠密向量空间,支持语义文本相似度、语义搜索等任务。
下载量 20
发布时间 : 3/3/2025
模型简介
该模型专为语义文本相似度和语义搜索任务设计,能够将文本转换为高维向量表示,适用于信息检索、文本分类和聚类等场景。
模型特点
高维向量表示
将句子和段落映射到1024维稠密向量空间,捕捉深层语义特征
长文本支持
最大支持8192个标记的序列长度,适合处理长文档
高效相似度计算
使用余弦相似度快速计算文本之间的语义相似度
模型能力
语义文本相似度计算
语义搜索
复述挖掘
文本分类
文本聚类
使用案例
信息检索
问答系统
通过计算问题与候选答案的语义相似度,找到最佳匹配答案
内容推荐
相似内容推荐
基于用户当前阅读内容,推荐语义相似的其他内容
🚀 基于BAAI/bge-m3的句子转换器
这是一个基于 sentence-transformers 库,从 BAAI/bge-m3 微调而来的模型。它可以将句子和段落映射到一个1024维的密集向量空间,可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等任务。
🚀 快速开始
直接使用(Sentence Transformers)
首先,安装 Sentence Transformers 库:
pip install -U sentence-transformers
然后,你可以加载该模型并进行推理:
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载模型
model = SentenceTransformer("BlackBeenie/bge-m3-msmarco-v3-sbert")
# 运行推理
sentences = [
'who is christopher kyle',
'Chris Kyle American Sniper. Christopher Scott Kyle was born and raised in Texas and was a United States Navy SEAL from 1999 to 2009. He is currently known as the most successful sniper in American military history. According to his book American Sniper, he had 160 confirmed kills (which was from 255 claimed kills).',
"'American Sniper' Chris Kyle's wife thanks audiences for 'watching the hard stuff'. Taya Kyle has told of her gratitude to audiences for supporting the film about her dead husband Chris Kyle, a Navy Seal played by Bradley Cooper.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 语义映射:能够将句子和段落映射到1024维的密集向量空间,方便进行语义相关任务。
- 多任务支持:可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等多种任务。
📦 安装指南
安装 Sentence Transformers 库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载模型
model = SentenceTransformer("BlackBeenie/bge-m3-msmarco-v3-sbert")
# 运行推理
sentences = [
'who is christopher kyle',
'Chris Kyle American Sniper. Christopher Scott Kyle was born and raised in Texas and was a United States Navy SEAL from 1999 to 2009. He is currently known as the most successful sniper in American military history. According to his book American Sniper, he had 160 confirmed kills (which was from 255 claimed kills).',
"'American Sniper' Chris Kyle's wife thanks audiences for 'watching the hard stuff'. Taya Kyle has told of her gratitude to audiences for supporting the film about her dead husband Chris Kyle, a Navy Seal played by Bradley Cooper.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | 句子转换器 |
基础模型 | BAAI/bge-m3 |
最大序列长度 | 8192 个标记 |
输出维度 | 1024 维 |
相似度函数 | 余弦相似度 |
模型来源
- 文档:Sentence Transformers 文档
- 仓库:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Sentence Transformers
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
训练详情
训练数据集
未命名数据集
- 大小:498,970 个训练样本
- 列:
sentence_0
、sentence_1
和sentence_2
- 基于前 1000 个样本的近似统计信息:
sentence_0 sentence_1 sentence_2 类型 字符串 字符串 字符串 详情 - 最小:4 个标记
- 平均:9.93 个标记
- 最大:37 个标记
- 最小:17 个标记
- 平均:90.01 个标记
- 最大:239 个标记
- 最小:16 个标记
- 平均:86.47 个标记
- 最大:229 个标记
- 样本:
sentence_0 sentence_1 sentence_2 how much does it cost to paint a interior house
Interior House Painting Cost Factors. Generally, it will take a minimum of two gallons of paint to cover a room. At the highest end, paint will cost anywhere between $30 and $60 per gallon and come in three different finishes: flat, semi-gloss or high-gloss.Flat finishes are the least shiny and are best suited for areas requiring frequent cleaning.rovide a few details about your project and receive competitive quotes from local pros. The average national cost to paint a home interior is $1,671, with most homeowners spending between $966 and $2,426.
Question DetailsAsked on 3/12/2014. Guest_... How much does it cost per square foot to paint the interior of a house? We just bought roughly a 1500 sg ft townhouse and want to get the entire house, including ceilings painted (including a roughly 400 sq ft finished basement not included in square footage).
when is s corp taxes due
If you form a corporate entity for your small business, regardless of whether it's taxed as a C or S corporation, a tax return must be filed with the Internal Revenue Service on its due date each year. Corporate tax returns are always due on the 15th day of the third month following the close of the tax year. The actual day that the tax return filing deadline falls on, however, isn't the same for every corporation.
But if you havenât, donât panic: the majority of forms arenât due quite yet. Most tax forms have an annual January 31 due date. Your tax forms are considered on time if the form is properly addressed and mailed on or before that date. If the regular due date falls on a Saturday, Sunday, or legal holiday â which is the case in 2015 for both January and February due dates â issuers have until the next business day.
what are disaccharides
Disaccharides are formed when two monosaccharides are joined together and a molecule of water is removed, a process known as dehydration reaction. For example; milk sugar (lactose) is made from glucose and galactose whereas the sugar from sugar cane and sugar beets (sucrose) is made from glucose and fructose.altose, another notable disaccharide, is made up of two glucose molecules. The two monosaccharides are bonded via a dehydration reaction (also called a condensation reaction or dehydration synthesis) that leads to the loss of a molecule of water and formation of a glycosidic bond.
Other disaccharides include (diagrams p. 364): Sucrose, common table sugar, has a glycosidic bond linking the anomeric hydroxyls of glucose and fructose. Because the configuration at the anomeric carbon of glucose is a (O points down from the ring), the linkage is designated a(12).
- 损失:
MultipleNegativesRankingLoss
,参数如下:{ "scale": 20.0, "similarity_fct": "cos_sim" }
训练超参数
非默认超参数
eval_strategy
:按步骤评估per_device_train_batch_size
:32per_device_eval_batch_size
:32num_train_epochs
:5fp16
:Truemulti_dataset_batch_sampler
:轮询
所有超参数
点击展开
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
训练日志
点击展开
轮次 | 步骤 | 训练损失 |
---|---|---|
0.0321 | 500 | 0.3086 |
0.0641 | 1000 | 0.2339 |
0.0962 | 1500 | 0.2289 |
0.1283 | 2000 | 0.2262 |
0.1603 | 2500 | 0.2213 |
0.1924 | 3000 | 0.2158 |
0.2245 | 3500 | 0.2101 |
0.2565 | 4000 | 0.2082 |
0.2886 | 4500 | 0.2107 |
0.3207 | 5000 | 0.2015 |
0.3527 | 5500 | 0.2023 |
0.3848 | 6000 | 0.201 |
0.4169 | 6500 | 0.1974 |
0.4489 | 7000 | 0.191 |
0.4810 | 7500 | 0.1956 |
0.5131 | 8000 | 0.2 |
0.5451 | 8500 | 0.191 |
0.5772 | 9000 | 0.1888 |
0.6092 | 9500 | 0.1885 |
0.6413 | 10000 | 0.1936 |
0.6734 | 10500 | 0.1944 |
0.7054 | 11000 | 0.1806 |
0.7375 | 11500 | 0.1834 |
0.7696 | 12000 | 0.1853 |
0.8016 | 12500 | 0.1823 |
0.8337 | 13000 | 0.1827 |
0.8658 | 13500 | 0.1821 |
0.8978 | 14000 | 0.1724 |
0.9299 | 14500 | 0.1745 |
0.9620 | 15000 | 0.1776 |
0.9940 | 15500 | 0.1781 |
1.0 | 15593 | - |
1.0261 | 16000 | 0.1133 |
1.0582 | 16500 | 0.0964 |
1.0902 | 17000 | 0.0931 |
1.1223 | 17500 | 0.0947 |
1.1544 | 18000 | 0.097 |
1.1864 | 18500 | 0.0977 |
1.2185 | 19000 | 0.096 |
1.2506 | 19500 | 0.1005 |
1.2826 | 20000 | 0.1008 |
1.3147 | 20500 | 0.0998 |
1.3468 | 21000 | 0.0972 |
1.3788 | 21500 | 0.0992 |
1.4109 | 22000 | 0.0994 |
1.4430 | 22500 | 0.1029 |
1.4750 | 23000 | 0.1008 |
1.5071 | 23500 | 0.0985 |
1.5392 | 24000 | 0.1013 |
1.5712 | 24500 | 0.1027 |
1.6033 | 25000 | 0.0988 |
1.6353 | 25500 | 0.0982 |
1.6674 | 26000 | 0.0994 |
1.6995 | 26500 | 0.0998 |
1.7315 | 27000 | 0.0989 |
1.7636 | 27500 | 0.101 |
1.7957 | 28000 | 0.099 |
1.8277 | 28500 | 0.096 |
1.8598 | 29000 | 0.0989 |
1.8919 | 29500 | 0.1011 |
1.9239 | 30000 | 0.0974 |
1.9560 | 30500 | 0.0999 |
1.9881 | 31000 | 0.0976 |
2.0 | 31186 | - |
2.0201 | 31500 | 0.0681 |
2.0522 | 32000 | 0.0478 |
2.0843 | 32500 | 0.0483 |
2.1163 | 33000 | 0.0485 |
2.1484 | 33500 | 0.0472 |
2.1805 | 34000 | 0.0482 |
2.2125 | 34500 | 0.0491 |
2.2446 | 35000 | 0.0484 |
2.2767 | 35500 | 0.0493 |
2.3087 | 36000 | 0.0484 |
2.3408 | 36500 | 0.0503 |
2.3729 | 37000 | 0.0498 |
2.4049 | 37500 | 0.0507 |
2.4370 | 38000 | 0.0502 |
2.4691 | 38500 | 0.0508 |
2.5011 | 39000 | 0.0483 |
2.5332 | 39500 | 0.0486 |
2.5653 | 40000 | 0.0494 |
2.5973 | 40500 | 0.0511 |
2.6294 | 41000 | 0.0508 |
2.6615 | 41500 | 0.0496 |
2.6935 | 42000 | 0.0487 |
2.7256 | 42500 | 0.0497 |
2.7576 | 43000 | 0.0491 |
2.7897 | 43500 | 0.0486 |
2.8218 | 44000 | 0.0503 |
2.8538 | 44500 | 0.0504 |
2.8859 | 45000 | 0.0499 |
2.9180 | 45500 | 0.048 |
2.9500 | 46000 | 0.047 |
2.9821 | 46500 | 0.0497 |
3.0 | 46779 | - |
3.0142 | 47000 | 0.0395 |
3.0462 | 47500 | 0.0247 |
3.0783 | 48000 | 0.0256 |
3.1104 | 48500 | 0.0254 |
3.1424 | 49000 | 0.0247 |
3.1745 | 49500 | 0.0251 |
3.2066 | 50000 | 0.0253 |
3.2386 | 50500 | 0.0263 |
3.2707 | 51000 | 0.0261 |
3.3028 | 51500 | 0.0259 |
3.3348 | 52000 | 0.0256 |
3.3669 | 52500 | 0.0254 |
3.3990 | 53000 | 0.026 |
3.4310 | 53500 | 0.0255 |
3.4631 | 54000 | 0.0255 |
3.4952 | 54500 | 0.0257 |
3.5272 | 55000 | 0.0249 |
3.5593 | 55500 | 0.0251 |
3.5914 | 56000 | 0.026 |
3.6234 | 56500 | 0.0246 |
3.6555 | 57000 | 0.0258 |
3.6876 | 57500 | 0.0266 |
3.7196 | 58000 | 0.0242 |
3.7517 | 58500 | 0.0251 |
3.7837 | 59000 | 0.0243 |
3.8158 | 59500 | 0.0249 |
3.8479 | 60000 | 0.0252 |
3.8799 | 60500 | 0.0251 |
3.9120 | 61000 | 0.025 |
3.9441 | 61500 | 0.0249 |
3.9761 | 62000 | 0.0254 |
4.0 | 62372 | - |
4.0082 | 62500 | 0.0221 |
4.0403 | 63000 | 0.0146 |
4.0723 | 63500 | 0.0146 |
4.1044 | 64000 | 0.0152 |
4.1365 | 64500 | 0.0153 |
4.1685 | 65000 | 0.0144 |
4.2006 | 65500 | 0.0154 |
4.2327 | 66000 | 0.0137 |
4.2647 | 66500 | 0.0145 |
4.2968 | 67000 | 0.0148 |
4.3289 | 67500 | 0.0148 |
4.3609 | 68000 | 0.0142 |
4.3930 | 68500 | 0.0148 |
4.4251 | 69000 | 0.0155 |
4.4571 | 69500 | 0.0148 |
4.4892 | 70000 | 0.0144 |
4.5213 | 70500 | 0.0144 |
4.5533 | 71000 | 0.0148 |
4.5854 | 71500 | 0.015 |
4.6175 | 72000 | 0.0149 |
4.6495 | 72500 | 0.0135 |
4.6816 | 73000 | 0.0142 |
4.7137 | 73500 | 0.0152 |
4.7457 | 74000 | 0.0144 |
4.7778 | 74500 | 0.0143 |
4.8099 | 75000 | 0.0141 |
4.8419 | 75500 | 0.0146 |
4.8740 | 76000 | 0.0142 |
4.9060 | 76500 | 0.0142 |
4.9381 | 77000 | 0.0147 |
4.9702 | 77500 | 0.0145 |
5.0 | 77965 | - |
框架版本
- Python:3.11.11
- Sentence Transformers:3.4.1
- Transformers:4.48.3
- PyTorch:2.5.1+cu124
- Accelerate:1.3.0
- Datasets:3.3.2
- Tokenizers:0.21.0
📄 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98