🚀 Distiluse-m-v2:針對西班牙語語義文本相似度在stsb_multi_mt上微調的模型
本模型是一個 sentence-transformers 模型(distiluse-base-multilingual-cased-v2),它能將句子和段落映射到一個 768 維的密集向量空間,可用於聚類或語義搜索等任務。
🚀 快速開始
📦 安裝指南
若你已安裝 sentence-transformers,使用此模型將十分便捷:
pip install -U sentence-transformers
💻 使用示例
基礎用法
使用 sentence-transformers
庫調用模型:
from sentence_transformers import SentenceTransformer
sentences = ["Nerea va a comprar un cuadro usando bitcoins", "Se puede comprar arte con bitcoins"]
model = SentenceTransformer('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es')
embeddings = model.encode(sentences)
print(embeddings)
高級用法
若未安裝 sentence-transformers,可以按以下方式使用模型:首先將輸入數據傳入 Transformer 模型,然後對上下文詞嵌入應用合適的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["Nerea va a comprar un cuadro usando bitcoins", "Se puede comprar arte con bitcoins"]
tokenizer = AutoTokenizer.from_pretrained('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es')
model = AutoModel.from_pretrained('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
🔧 技術細節
評估方法
from datasets import load_dataset
from sentence_transformers import SentenceTransformer, InputExample
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
test_data = load_dataset('stsb_multi_mt', 'es', split='test')
test_data = test_data.rename_columns({'similarity_score': 'label'})
test_data = test_data.map(lambda x: {'label': x['label'] / 5.0})
samples = []
for sample in test_data:
samples.append(InputExample(
texts=[sample['sentence1'], sample['sentence2']],
label=sample['label']
))
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(
samples, write_csv=False
)
model = SentenceTransformer('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es')
evaluator(model)
評估結果
斯皮爾曼等級相關性:0.7604056195656299
若要對該模型進行自動評估,請參考 Sentence Embeddings Benchmark:https://seb.sbert.net
訓練參數
- 數據加載器:
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
,長度為 906,參數如下:{'batch_size': 16}
- 損失函數:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,參數如下:{'scale': 20.0, 'similarity_fct': 'cos_sim'}
- fit() 方法的參數:
{
"epochs": 3,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 271,
"weight_decay": 0.01
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
屬性 |
詳情 |
模型類型 |
針對西班牙語語義文本相似度在stsb_multi_mt上微調的Distiluse-m-v2模型 |
訓練數據 |
stsb_multi_mt |
標籤 |
sentence-transformers、feature-extraction、sentence-similarity、transformers |
縮略圖 |
https://imgur.com/a/G77ZqQN |