🚀 句子-IT5-base模型
句子-IT5-base是一個基於sentence-transformers的模型,它能夠將句子和段落映射到一個512維的密集向量空間,可用於聚類或語義搜索等任務。該模型基於T5(IT5)基礎模型構建,在多種數據集上進行了訓練,包括問題/上下文對(squad-it)、標籤/新聞文章對、標題/文本對(change-it)以及stsb數據集。
🚀 快速開始
📦 安裝指南
若要使用此模型,需先安裝sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基礎用法
使用sentence-transformers
庫調用模型的示例代碼如下:
from sentence_transformers import SentenceTransformer
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]
model = SentenceTransformer('efederici/sentence-IT5-base')
embeddings = model.encode(sentences)
print(embeddings)
高級用法
若不使用sentence-transformers庫,可按如下方式使用模型:首先將輸入數據傳入Transformer模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"]
tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-IT5-base')
model = AutoModel.from_pretrained('efederici/sentence-IT5-base')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
🔧 技術細節
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
信息表格
屬性 |
詳情 |
模型類型 |
基於sentence-transformers的句子嵌入模型,基於T5(IT5)基礎模型 |
訓練數據 |
問題/上下文對(squad-it)、標籤/新聞文章對、標題/文本對(change-it)以及stsb數據集 |