🚀 sentence-transformers/msmarco-distilbert-base-tas-b
這是一個將 DistilBert TAS - B 模型 遷移到 sentence-transformers 的模型。它能將句子和段落映射到 768 維的密集向量空間,並針對語義搜索任務進行了優化。
🚀 快速開始
本模型可通過兩種方式使用,下面為你詳細介紹。
📦 安裝指南
若要使用此模型,你需要安裝 sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基礎用法(Sentence - Transformers)
當你安裝了 sentence-transformers 後,使用該模型會變得非常簡單:
from sentence_transformers import SentenceTransformer, util
query = "How many people live in London?"
docs = ["Around 9 Million people live in London", "London is known for its financial district"]
model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-tas-b')
query_emb = model.encode(query)
doc_emb = model.encode(docs)
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
doc_score_pairs = list(zip(docs, scores))
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
for doc, score in doc_score_pairs:
print(score, doc)
高級用法(HuggingFace Transformers)
若未安裝 sentence-transformers,你可以按以下方式使用該模型:首先,將輸入傳遞給 Transformer 模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output):
return model_output.last_hidden_state[:,0]
def encode(texts):
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input, return_dict=True)
embeddings = cls_pooling(model_output)
return embeddings
query = "How many people live in London?"
docs = ["Around 9 Million people live in London", "London is known for its financial district"]
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/msmarco-distilbert-base-tas-b")
model = AutoModel.from_pretrained("sentence-transformers/msmarco-distilbert-base-tas-b")
query_emb = encode(query)
doc_emb = encode(docs)
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()
doc_score_pairs = list(zip(docs, scores))
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
for doc, score in doc_score_pairs:
print(score, doc)
📚 詳細文檔
評估結果
若要對該模型進行自動化評估,請參考 Sentence Embeddings Benchmark:https://seb.sbert.net
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用與作者
更多信息請查看:DistilBert TAS - B 模型
📄 許可證
本項目採用 Apache - 2.0 許可證。
屬性 |
詳情 |
模型類型 |
sentence-transformers、feature-extraction、sentence-similarity、transformers |
訓練數據 |
未提及 |