🚀 S-PubMedBert-MedQuAD
S-PubMedBert-MedQuAD是一個句子轉換器模型,它可以將句子和段落映射到768維的密集向量空間,可用於聚類或語義搜索等任務。
🚀 快速開始
本模型有兩種使用方式,分別是使用sentence-transformers
庫和不使用該庫。下面將分別介紹這兩種使用方式。
📦 安裝指南
若要使用sentence-transformers
庫來調用此模型,你需要先安裝它:
pip install -U sentence-transformers
💻 使用示例
基礎用法(使用sentence-transformers
庫)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('TimKond/S-PubMedBert-MedQuAD')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(不使用sentence-transformers
庫)
若不使用sentence-transformers
庫,你需要先將輸入數據通過轉換器模型,然後對上下文詞嵌入應用合適的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('TimKond/S-PubMedBert-MedQuAD')
model = AutoModel.from_pretrained('TimKond/S-PubMedBert-MedQuAD')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
評估結果
若要對該模型進行自動評估,請參考句子嵌入基準:https://seb.sbert.net
訓練情況
該模型使用以下參數進行訓練:
數據加載器:
torch.utils.data.DataLoader
,長度為82590,參數如下:
{'batch_size': 2, 'shuffle':True}
損失函數:
sentence_transformers.losses.SoftmaxLoss
,參數如下:
{'num_labels': 2, 'sentence_embedding_dimension': '768'}
fit()
方法的參數:
{
"callback": null,
"epochs": 1,
"evaluation_steps": 0,
"evaluator": None,
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"correct_bias": false,
"eps": 1e-06,
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 8259,
"weight_decay": 0.01
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用與作者
📄 許可證
本項目採用MIT許可證。