🚀 希伯來語XLSR Wav2Vec2大模型53
本項目是在多個從YouTube下載的樣本上對facebook/wav2vec2-large-xlsr-53進行微調得到的模型。該模型可用於希伯來語的自動語音識別任務,使用時請確保輸入語音的採樣率為16kHz。
🚀 快速開始
本模型可直接使用(無需語言模型),以下是使用步驟和示例代碼。
💻 使用示例
基礎用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "he", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew")
model = Wav2Vec2ForCTC.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
高級用法
模型可以在一些希伯來語測試數據上進行評估,以下是評估代碼:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "he", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew")
model = Wav2Vec2ForCTC.from_pretrained("imvladikon/wav2vec2-large-xlsr-53-hebrew").to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
測試結果:
示例預測
📄 許可證
本項目採用Apache-2.0許可證。
📦 模型信息
屬性 |
詳情 |
模型類型 |
希伯來語XLSR Wav2Vec2大模型53 |
訓練數據 |
多個從YouTube下載的樣本 |
評估指標 |
詞錯誤率(WER) |
任務類型 |
自動語音識別 |
數據集 |
Common Voice希伯來語子集 |