Wav2vec2 Xls R 300m Hebrew
W
Wav2vec2 Xls R 300m Hebrew
由imvladikon開發
這是一個基於facebook/wav2vec2-xls-r-300m模型微調的希伯來語自動語音識別模型,通過兩階段訓練在小規模和大規模數據集上優化性能。
下載量 1.2M
發布時間 : 3/2/2022
模型概述
該模型專門用於希伯來語的自動語音識別任務,通過兩階段微調過程在小規模高質量數據集和大規模多樣化數據集上進行訓練,以提高識別準確率。
模型特點
兩階段微調訓練
先在小規模高質量數據集上微調,再在大規模多樣化數據集上進行二次訓練,提高模型魯棒性
多源數據訓練
訓練數據包含高質量標註數據、多樣化來源數據以及模型弱標記的未標記數據
低詞錯誤率
在小規模測試集上達到17.73%的詞錯誤率,在大規模測試集上達到23.18%的詞錯誤率
模型能力
希伯來語語音識別
音頻轉文本
魯棒語音處理
使用案例
語音轉錄
希伯來語會議記錄
將希伯來語會議錄音自動轉錄為文本
詞錯誤率約23.18%
希伯來語語音助手
為希伯來語語音助手提供語音識別能力
語音分析
希伯來語語音內容分析
分析希伯來語語音內容並提取關鍵信息
🚀 wav2vec2-xls-r-300m-hebrew
該模型是基於 facebook/wav2vec2-xls-r-300m 在私有數據集上進行兩階段微調得到的。首先在一個包含優質樣本的小數據集上進行微調,然後將得到的模型在一個大數據集上進行微調,該大數據集結合了小的優質數據集、來自不同來源的各種樣本,以及一個使用先前訓練的模型進行弱標註的未標註數據集。
📦 數據集詳情
小數據集
劃分 | 大小(GB) | 樣本數量 | 時長(小時) |
---|---|---|---|
訓練集 | 4.19 | 20306 | 28 |
驗證集 | 1.05 | 5076 | 7 |
大數據集
劃分 | 大小(GB) | 樣本數量 | 時長(小時) |
---|---|---|---|
訓練集 | 12.3 | 90777 | 69 |
驗證集 | 2.39 | 20246 | 14* |
(*驗證集未使用弱標註數據)
📊 訓練結果
第一次訓練後
- 小數據集
- 損失:0.5438
- 字錯率(WER):0.1773
- 大數據集
- 字錯率(WER):0.3811
第二次訓練後
- 小數據集
- 字錯率(WER):0.1697
- 大數據集
- 損失:0.4502
- 字錯率(WER):0.2318
🔧 訓練過程
訓練超參數
第一次訓練
訓練過程中使用了以下超參數:
- 學習率:0.0003
- 訓練批次大小:8
- 評估批次大小:8
- 隨機種子:42
- 分佈式類型:多GPU
- 設備數量:2
- 梯度累積步數:4
- 總訓練批次大小:64
- 總評估批次大小:16
- 優化器:Adam(β1 = 0.9,β2 = 0.999,ε = 1e-08)
- 學習率調度器類型:線性
- 學習率調度器熱身步數:1000
- 訓練輪數:100.0
- 混合精度訓練:原生自動混合精度(Native AMP)
第一次訓練結果
訓練損失 | 輪數 | 步數 | 驗證損失 | 字錯率(WER) |
---|---|---|---|---|
無記錄 | 3.15 | 1000 | 0.5203 | 0.4333 |
1.4284 | 6.31 | 2000 | 0.4816 | 0.3951 |
1.4284 | 9.46 | 3000 | 0.4315 | 0.3546 |
1.283 | 12.62 | 4000 | 0.4278 | 0.3404 |
1.283 | 15.77 | 5000 | 0.4090 | 0.3054 |
1.1777 | 18.93 | 6000 | 0.3893 | 0.3006 |
1.1777 | 22.08 | 7000 | 0.3968 | 0.2857 |
1.0994 | 25.24 | 8000 | 0.3892 | 0.2751 |
1.0994 | 28.39 | 9000 | 0.4061 | 0.2690 |
1.0323 | 31.54 | 10000 | 0.4114 | 0.2507 |
1.0323 | 34.7 | 11000 | 0.4021 | 0.2508 |
0.9623 | 37.85 | 12000 | 0.4032 | 0.2378 |
0.9623 | 41.01 | 13000 | 0.4148 | 0.2374 |
0.9077 | 44.16 | 14000 | 0.4350 | 0.2323 |
0.9077 | 47.32 | 15000 | 0.4515 | 0.2246 |
0.8573 | 50.47 | 16000 | 0.4474 | 0.2180 |
0.8573 | 53.63 | 17000 | 0.4649 | 0.2171 |
0.8083 | 56.78 | 18000 | 0.4455 | 0.2102 |
0.8083 | 59.94 | 19000 | 0.4587 | 0.2092 |
0.769 | 63.09 | 20000 | 0.4794 | 0.2012 |
0.769 | 66.25 | 21000 | 0.4845 | 0.2007 |
0.7308 | 69.4 | 22000 | 0.4937 | 0.2008 |
0.7308 | 72.55 | 23000 | 0.4920 | 0.1895 |
0.6927 | 75.71 | 24000 | 0.5179 | 0.1911 |
0.6927 | 78.86 | 25000 | 0.5202 | 0.1877 |
0.6622 | 82.02 | 26000 | 0.5266 | 0.1840 |
0.6622 | 85.17 | 27000 | 0.5351 | 0.1854 |
0.6315 | 88.33 | 28000 | 0.5373 | 0.1811 |
0.6315 | 91.48 | 29000 | 0.5331 | 0.1792 |
0.6075 | 94.64 | 30000 | 0.5390 | 0.1779 |
0.6075 | 97.79 | 31000 | 0.5459 | 0.1773 |
第二次訓練
訓練過程中使用了以下超參數:
- 學習率:0.0003
- 訓練批次大小:8
- 評估批次大小:8
- 隨機種子:42
- 分佈式類型:多GPU
- 設備數量:2
- 梯度累積步數:4
- 總訓練批次大小:64
- 總評估批次大小:16
- 優化器:Adam(β1 = 0.9,β2 = 0.999,ε = 1e-08)
- 學習率調度器類型:線性
- 學習率調度器熱身步數:1000
- 訓練輪數:60.0
- 混合精度訓練:原生自動混合精度(Native AMP)
第二次訓練結果
訓練損失 | 輪數 | 步數 | 驗證損失 | 字錯率(WER) |
---|---|---|---|---|
無記錄 | 0.7 | 1000 | 0.5371 | 0.3811 |
1.3606 | 1.41 | 2000 | 0.5247 | 0.3902 |
1.3606 | 2.12 | 3000 | 0.5126 | 0.3859 |
1.3671 | 2.82 | 4000 | 0.5062 | 0.3828 |
1.3671 | 3.53 | 5000 | 0.4979 | 0.3672 |
1.3421 | 4.23 | 6000 | 0.4906 | 0.3816 |
1.3421 | 4.94 | 7000 | 0.4784 | 0.3651 |
1.328 | 5.64 | 8000 | 0.4810 | 0.3669 |
1.328 | 6.35 | 9000 | 0.4747 | 0.3597 |
1.3109 | 7.05 | 10000 | 0.4813 | 0.3808 |
1.3109 | 7.76 | 11000 | 0.4631 | 0.3561 |
1.2873 | 8.46 | 12000 | 0.4603 | 0.3431 |
1.2873 | 9.17 | 13000 | 0.4579 | 0.3533 |
1.2661 | 9.87 | 14000 | 0.4471 | 0.3365 |
1.2661 | 10.58 | 15000 | 0.4584 | 0.3437 |
1.249 | 11.28 | 16000 | 0.4461 | 0.3454 |
1.249 | 11.99 | 17000 | 0.4482 | 0.3367 |
1.2322 | 12.69 | 18000 | 0.4464 | 0.3335 |
1.2322 | 13.4 | 19000 | 0.4427 | 0.3454 |
1.22 | 14.1 | 20000 | 0.4440 | 0.3395 |
1.22 | 14.81 | 21000 | 0.4459 | 0.3378 |
1.2044 | 15.51 | 22000 | 0.4406 | 0.3199 |
1.2044 | 16.22 | 23000 | 0.4398 | 0.3155 |
1.1913 | 16.92 | 24000 | 0.4237 | 0.3150 |
1.1913 | 17.63 | 25000 | 0.4287 | 0.3279 |
1.1705 | 18.34 | 26000 | 0.4253 | 0.3103 |
1.1705 | 19.04 | 27000 | 0.4234 | 0.3098 |
1.1564 | 19.75 | 28000 | 0.4174 | 0.3076 |
1.1564 | 20.45 | 29000 | 0.4260 | 0.3160 |
1.1461 | 21.16 | 30000 | 0.4235 | 0.3036 |
1.1461 | 21.86 | 31000 | 0.4309 | 0.3055 |
1.1285 | 22.57 | 32000 | 0.4264 | 0.3006 |
1.1285 | 23.27 | 33000 | 0.4201 | 0.2880 |
1.1135 | 23.98 | 34000 | 0.4131 | 0.2975 |
1.1135 | 24.68 | 35000 | 0.4202 | 0.2849 |
1.0968 | 25.39 | 36000 | 0.4105 | 0.2888 |
1.0968 | 26.09 | 37000 | 0.4210 | 0.2834 |
1.087 | 26.8 | 38000 | 0.4123 | 0.2843 |
1.087 | 27.5 | 39000 | 0.4216 | 0.2803 |
1.0707 | 28.21 | 40000 | 0.4161 | 0.2787 |
1.0707 | 28.91 | 41000 | 0.4186 | 0.2740 |
1.0575 | 29.62 | 42000 | 0.4118 | 0.2845 |
1.0575 | 30.32 | 43000 | 0.4243 | 0.2773 |
1.0474 | 31.03 | 44000 | 0.4221 | 0.2707 |
1.0474 | 31.73 | 45000 | 0.4138 | 0.2700 |
1.0333 | 32.44 | 46000 | 0.4102 | 0.2638 |
1.0333 | 33.15 | 47000 | 0.4162 | 0.2650 |
1.0191 | 33.85 | 48000 | 0.4155 | 0.2636 |
1.0191 | 34.56 | 49000 | 0.4129 | 0.2656 |
1.0087 | 35.26 | 50000 | 0.4157 | 0.2632 |
1.0087 | 35.97 | 51000 | 0.4090 | 0.2654 |
0.9901 | 36.67 | 52000 | 0.4183 | 0.2587 |
0.9901 | 37.38 | 53000 | 0.4251 | 0.2648 |
0.9795 | 38.08 | 54000 | 0.4229 | 0.2555 |
0.9795 | 38.79 | 55000 | 0.4176 | 0.2546 |
0.9644 | 39.49 | 56000 | 0.4223 | 0.2513 |
0.9644 | 40.2 | 57000 | 0.4244 | 0.2530 |
0.9534 | 40.9 | 58000 | 0.4175 | 0.2538 |
0.9534 | 41.61 | 59000 | 0.4213 | 0.2505 |
0.9397 | 42.31 | 60000 | 0.4275 | 0.2565 |
0.9397 | 43.02 | 61000 | 0.4315 | 0.2528 |
0.9269 | 43.72 | 62000 | 0.4316 | 0.2501 |
0.9269 | 44.43 | 63000 | 0.4247 | 0.2471 |
0.9175 | 45.13 | 64000 | 0.4376 | 0.2469 |
0.9175 | 45.84 | 65000 | 0.4335 | 0.2450 |
0.9026 | 46.54 | 66000 | 0.4336 | 0.2452 |
0.9026 | 47.25 | 67000 | 0.4400 | 0.2427 |
0.8929 | 47.95 | 68000 | 0.4382 | 0.2429 |
0.8929 | 48.66 | 69000 | 0.4361 | 0.2415 |
0.8786 | 49.37 | 70000 | 0.4413 | 0.2398 |
0.8786 | 50.07 | 71000 | 0.4392 | 0.2415 |
0.8714 | 50.78 | 72000 | 0.4345 | 0.2406 |
0.8714 | 51.48 | 73000 | 0.4475 | 0.2402 |
0.8589 | 52.19 | 74000 | 0.4473 | 0.2374 |
0.8589 | 52.89 | 75000 | 0.4457 | 0.2357 |
0.8493 | 53.6 | 76000 | 0.4462 | 0.2366 |
0.8493 | 54.3 | 77000 | 0.4494 | 0.2356 |
0.8395 | 55.01 | 78000 | 0.4472 | 0.2352 |
0.8395 | 55.71 | 79000 | 0.4490 | 0.2339 |
0.8295 | 56.42 | 80000 | 0.4489 | 0.2318 |
0.8295 | 57.12 | 81000 | 0.4469 | 0.2320 |
0.8225 | 57.83 | 82000 | 0.4478 | 0.2321 |
0.8225 | 58.53 | 83000 | 0.4525 | 0.2326 |
0.816 | 59.24 | 84000 | 0.4532 | 0.2316 |
0.816 | 59.94 | 85000 | 0.4502 | 0.2318 |
💻 框架版本
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
📄 模型指標
屬性 | 詳情 |
---|---|
模型類型 | 自動語音識別 |
訓練數據 | 小數據集和大數據集,包含不同來源的樣本和弱標註數據 |
測試字錯率(WER) | 23.18% |
Voice Activity Detection
MIT
基於pyannote.audio 2.1版本的語音活動檢測模型,用於識別音頻中的語音活動時間段
語音識別
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
這是一個針對葡萄牙語語音識別任務微調的XLSR-53大模型,基於Common Voice 6.1數據集訓練,支持葡萄牙語語音轉文本。
語音識別 其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先進自動語音識別(ASR)和語音翻譯模型,在超過500萬小時的標註數據上訓練,具有強大的跨數據集和跨領域泛化能力。
語音識別 支持多種語言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI開發的最先進的自動語音識別(ASR)和語音翻譯模型,經過超過500萬小時標記數據的訓練,在零樣本設置下展現出強大的泛化能力。
語音識別
Transformers 支持多種語言

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的俄語語音識別模型,支持16kHz採樣率的語音輸入
語音識別 其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的中文語音識別模型,支持16kHz採樣率的語音輸入。
語音識別 中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53微調的荷蘭語語音識別模型,在Common Voice和CSS10數據集上訓練,支持16kHz音頻輸入。
語音識別 其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的日語語音識別模型,支持16kHz採樣率的語音輸入
語音識別 日語
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基於Hugging Face預訓練模型的文本與音頻強制對齊工具,支持多種語言,內存效率高
語音識別
Transformers 支持多種語言

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53微調的阿拉伯語語音識別模型,在Common Voice和阿拉伯語語音語料庫上訓練
語音識別 阿拉伯語
W
jonatasgrosman
2.3M
37
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98