Wav2vec2 Large Xlsr Turkish
基於facebook/wav2vec2-large-xlsr-53在土耳其語Common Voice數據集上微調的語音識別模型
下載量 384
發布時間 : 3/2/2022
模型概述
該模型是針對土耳其語優化的自動語音識別(ASR)系統,支持16kHz採樣率的語音輸入。
模型特點
土耳其語優化
專門針對土耳其語進行微調,提供更好的語音識別準確率
基於XLSR大模型
基於facebook的wav2vec2-large-xlsr-53模型,具有較強的語音特徵提取能力
16kHz採樣率支持
支持標準16kHz採樣率的語音輸入
模型能力
土耳其語語音識別
音頻轉文本
自動語音轉錄
使用案例
語音轉錄
土耳其語語音轉文字
將土耳其語語音內容轉換為文本
詞錯誤率(WER)27.51%
語音助手
土耳其語語音指令識別
用於土耳其語語音助手系統中的指令識別
🚀 Wav2Vec2-Large-XLSR-53-土耳其語
該項目基於 Common Voice 數據集對 facebook/wav2vec2-large-xlsr-53 模型進行了土耳其語微調。使用該模型時,請確保語音輸入採樣率為 16kHz。
🚀 快速開始
本模型可直接使用(無需語言模型),以下是具體使用步驟。
✨ 主要特性
- 基於 XLSR Wav2Vec2 架構,專為土耳其語語音識別任務進行微調。
- 可直接用於土耳其語語音識別,無需額外的語言模型。
📦 安裝指南
在使用模型之前,需要安裝一些必要的依賴包:
# 安裝所需的包
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer
💻 使用示例
基礎用法
以下是使用該模型進行預測的示例代碼:
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import numpy as np
import re
import string
import IPython.display as ipd
chars_to_ignore = [
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
"#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"',
"“", "%", "‘", "�", "–", "…", "_", "”", '“', '„'
]
chars_to_mapping = {
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
}
def multiple_replace(text, chars_to_mapping):
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
def remove_special_characters(text, chars_to_ignore_regex):
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
return text
def normalizer(batch, chars_to_ignore, chars_to_mapping):
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
text = batch["sentence"].lower().strip()
text = text.replace("\u0307", " ").strip()
text = multiple_replace(text, chars_to_mapping)
text = remove_special_characters(text, chars_to_ignore_regex)
batch["sentence"] = text
return batch
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish").to(device)
dataset = load_dataset("common_voice", "et", split="test[:1%]")
dataset = dataset.map(
normalizer,
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
max_items = np.random.randint(0, len(result), 10).tolist()
for i in max_items:
reference, predicted = result["sentence"][i], result["predicted"][i]
print("reference:", reference)
print("predicted:", predicted)
print('---')
輸出示例
reference: ülke şu anda iki federasyona üye
predicted: ülke şu anda iki federasyona üye
---
reference: foruma dört yüzde fazla kişi katıldı
predicted: soruma dört yüzden fazla kişi katıldı
---
reference: mobi altmış üç çalışanları da mutsuz
predicted: mobia haltmış üç çalışanları da mutsur
---
reference: kentin mali esnekliğinin düşük olduğu bildirildi
predicted: kentin mali esnekleğinin düşük olduğu bildirildi
---
reference: fouere iki ülkeyi sorunu abartmamaya çağırdı
predicted: foor iki ülkeyi soruna abartmamaya çanayordı
---
reference: o ülkeden herhangi bir tepki geldi mi
predicted: o ülkeden herhayın bir tepki geldi mi
---
reference: bunlara asla sırtımızı dönmeyeceğiz
predicted: bunlara asla sırtımızı dönmeyeceğiz
---
reference: sizi ayakta tutan nedir
predicted: sizi ayakta tutan nedir
---
reference: artık insanlar daha bireysel yaşıyor
predicted: artık insanlar daha bir eyselli yaşıyor
---
reference: her ikisi de diyaloga hazır olduğunu söylüyor
predicted: her ikisi de diyaloğa hazır olduğunu söylüyor
---
reference: merkez bankasının başlıca amacı düşük enflasyon
predicted: merkez bankasının başlrıca anatı güşükyen flasyon
---
reference: firefox
predicted: fair foks
---
reference: ülke halkı çok misafirsever ve dışa dönük
predicted: ülke halktı çok isatirtever ve dışa dönük
---
reference: ancak kamuoyu bu durumu pek de affetmiyor
predicted: ancak kamuonyulgukirmu pek deafıf etmiyor
---
reference: i ki madende iki bin beş yüzden fazla kişi çalışıyor
predicted: i ki madende iki bin beş yüzden fazla kişi çalışıyor
---
reference: sunnyside park dışarıdan oldukça iyi görünüyor
predicted: sani sahip park dışarıdan oldukça iyi görünüyor
---
reference: büyük ödül on beş bin avro
predicted: büyük ödül on beş bin avro
---
reference: köyümdeki camiler depoya dönüştürüldü
predicted: küyümdeki camiler depoya dönüştürüldü
---
reference: maç oldukça diplomatik bir sonuçla birbir bitti
predicted: maç oldukça diplomatik bir sonuçla bir birbitti
---
reference: kuşların ikisi de karantinada öldüler
predicted: kuşların ikiste karantinada özdüler
---
📚 詳細文檔
模型評估
可以使用以下代碼在 Common Voice 土耳其語測試數據集上對模型進行評估:
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric
import numpy as np
import re
import string
chars_to_ignore = [
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
"#", "!", "?", "«", "»", "(", ")", "؛", ",", "?", ".", "!", "-", ";", ":", '"',
"“", "%", "‘", "�", "–", "…", "_", "”", '“', '„'
]
chars_to_mapping = {
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
"\u0307": " "
}
def multiple_replace(text, chars_to_mapping):
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
def remove_special_characters(text, chars_to_ignore_regex):
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
return text
def normalizer(batch, chars_to_ignore, chars_to_mapping):
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
text = batch["sentence"].lower().strip()
text = text.replace("\u0307", " ").strip()
text = multiple_replace(text, chars_to_mapping)
text = remove_special_characters(text, chars_to_ignore_regex)
text = re.sub(" +", " ", text)
text = text.strip() + " "
batch["sentence"] = text
return batch
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-turkish").to(device)
dataset = load_dataset("common_voice", "tr", split="test")
dataset = dataset.map(
normalizer,
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
wer = load_metric("wer")
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
測試結果
- 字錯率(WER):27.51%
訓練與報告
訓練過程使用了 Common Voice 的 train
和 validation
數據集。
📄 許可證
本項目採用 Apache-2.0 許可證。
Voice Activity Detection
MIT
基於pyannote.audio 2.1版本的語音活動檢測模型,用於識別音頻中的語音活動時間段
語音識別
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
這是一個針對葡萄牙語語音識別任務微調的XLSR-53大模型,基於Common Voice 6.1數據集訓練,支持葡萄牙語語音轉文本。
語音識別 其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先進自動語音識別(ASR)和語音翻譯模型,在超過500萬小時的標註數據上訓練,具有強大的跨數據集和跨領域泛化能力。
語音識別 支持多種語言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI開發的最先進的自動語音識別(ASR)和語音翻譯模型,經過超過500萬小時標記數據的訓練,在零樣本設置下展現出強大的泛化能力。
語音識別
Transformers 支持多種語言

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的俄語語音識別模型,支持16kHz採樣率的語音輸入
語音識別 其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的中文語音識別模型,支持16kHz採樣率的語音輸入。
語音識別 中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53微調的荷蘭語語音識別模型,在Common Voice和CSS10數據集上訓練,支持16kHz音頻輸入。
語音識別 其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的日語語音識別模型,支持16kHz採樣率的語音輸入
語音識別 日語
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基於Hugging Face預訓練模型的文本與音頻強制對齊工具,支持多種語言,內存效率高
語音識別
Transformers 支持多種語言

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53微調的阿拉伯語語音識別模型,在Common Voice和阿拉伯語語音語料庫上訓練
語音識別 阿拉伯語
W
jonatasgrosman
2.3M
37
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98