🚀 mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-100k
這是一個 sentence-transformers 模型,它可以將句子和段落映射到一個 768 維的密集向量空間,可用於聚類或語義搜索等任務。該模型是在 unicamp-dl/mmarco 葡萄牙語子集中的前 100k 三元組上對 sentence-transformers/msmarco-distilbert-base-tas-b 進行微調得到的。
🚀 快速開始
本模型可用於將句子和段落映射到 768 維的密集向量空間,適用於聚類或語義搜索等任務。
✨ 主要特性
屬性 |
詳情 |
模型類型 |
sentence-transformers |
訓練數據 |
unicamp-dl/mmarco 葡萄牙語子集的前 100k 三元組 |
📦 安裝指南
若要使用此模型,需安裝 sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基礎用法
使用 sentence-transformers 庫調用該模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-100k')
embeddings = model.encode(sentences)
print(embeddings)
高級用法
若未安裝 sentence-transformers,可按以下方式使用該模型:先將輸入傳遞給 transformer 模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output, attention_mask):
return model_output[0][:,0]
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('{mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-100k}')
model = AutoModel.from_pretrained('{mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-100k}')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
評估結果
若要對該模型進行自動評估,請參考 Sentence Embeddings Benchmark:https://seb.sbert.net
訓練信息
模型的訓練參數如下:
數據加載器(DataLoader):
torch.utils.data.dataloader.DataLoader
,長度為 6250,參數如下:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
損失函數(Loss):
sentence_transformers.losses.TripletLoss.TripletLoss
,參數如下:
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
fit()
方法的參數:
{
"epochs": 5,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 3125,
"weight_decay": 0.01
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用與作者
如需瞭解更多信息,請參考相關文檔。