🚀 {MODEL_NAME}
這是一個 句子轉換器(sentence-transformers) 模型:它能將句子和段落映射到一個384維的密集向量空間,可用於聚類或語義搜索等任務。
🚀 快速開始
安裝依賴
當你安裝了 句子轉換器(sentence-transformers) 後,使用這個模型會變得很簡單:
pip install -U sentence-transformers
使用示例
基礎用法
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
📚 詳細文檔
評估結果
要對該模型進行自動評估,請查看 句子嵌入基準測試(Sentence Embeddings Benchmark):https://seb.sbert.net
訓練細節
該模型使用以下參數進行訓練:
數據加載器(DataLoader)
torch.utils.data.dataloader.DataLoader
,長度為13952,參數如下:
{'batch_size': 14, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
損失函數(Loss)
sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss
,參數如下:
{'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True}
fit() 方法的參數
{
"epochs": 10,
"evaluation_steps": 2000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0.01
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 384, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
引用與作者