🚀 E5-base-multilingual-4096
E5-base-multilingual-4096 是 intfloat/multilingual-e5-base 的 Local-Sparse-Global 版本,它能夠處理多達 4k 個標記。
🚀 快速開始
💻 使用示例
基礎用法
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(
last_hidden_states: Tensor,
attention_mask: Tensor
) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
'query: how much protein should a female eat',
'query: summit define',
"passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
"passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
]
tokenizer = AutoTokenizer.from_pretrained('efederici/e5-base-multilingual-4096')
model = AutoModel.from_pretrained('efederici/e5-base-multilingual-4096', trust_remote_code=True)
batch_dict = tokenizer(input_texts, max_length=4096, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
引用信息
@article{wang2022text,
title={Text Embeddings by Weakly-Supervised Contrastive Pre-training},
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu},
journal={arXiv preprint arXiv:2212.03533},
year={2022}
}
信息表格
屬性 |
詳情 |
模型類型 |
多語言句子相似度模型 |
適用任務 |
句子相似度計算 |
支持語言 |
多語言(af、am、ar 等眾多語言) |