🚀 迷你圖像字幕生成模型
這是一個基於bert-mini
和vit-small
的圖像字幕生成模型,模型大小僅 130MB!它在 CPU 上也能實現快速推理。
🚀 快速開始
本模型是一個圖像字幕生成模型,基於bert-mini
和vit-small
構建,能快速為圖像生成描述。
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
import requests, time
from PIL import Image
model_path = "cnmoro/mini-image-captioning"
model = VisionEncoderDecoderModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
image_processor = AutoImageProcessor.from_pretrained(model_path)
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/New_york_times_square-terabass.jpg/800px-New_york_times_square-terabass.jpg"
image = Image.open(requests.get(url, stream=True).raw)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
start = time.time()
generated_ids = model.generate(
pixel_values,
temperature=0.7,
top_p=0.8,
top_k=50,
num_beams=3
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
end = time.time()
print(generated_text)
print(f"Time taken: {end - start} seconds")
💻 使用示例
基礎用法
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
import requests, time
from PIL import Image
model_path = "cnmoro/mini-image-captioning"
model = VisionEncoderDecoderModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
image_processor = AutoImageProcessor.from_pretrained(model_path)
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/New_york_times_square-terabass.jpg/800px-New_york_times_square-terabass.jpg"
image = Image.open(requests.get(url, stream=True).raw)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
start = time.time()
generated_ids = model.generate(
pixel_values,
temperature=0.7,
top_p=0.8,
top_k=50,
num_beams=3
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
end = time.time()
print(generated_text)
print(f"Time taken: {end - start} seconds")
高級用法
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
import requests, time
from PIL import Image
model_path = "cnmoro/mini-image-captioning"
model = VisionEncoderDecoderModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
image_processor = AutoImageProcessor.from_pretrained(model_path)
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/New_york_times_square-terabass.jpg/800px-New_york_times_square-terabass.jpg"
image = Image.open(requests.get(url, stream=True).raw)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
start = time.time()
generated_ids = model.generate(
pixel_values,
temperature=0.7,
top_p=0.8,
top_k=50,
num_beams=1
)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
end = time.time()
print(generated_text)
print(f"Time taken: {end - start} seconds")
📄 許可證
本項目採用 Apache-2.0 許可證。
📚 詳細文檔
屬性 |
詳情 |
基礎模型 |
google/bert_uncased_L-4_H-256_A-4、WinKawaks/vit-small-patch16-224 |
任務類型 |
圖像轉文本 |
庫名稱 |
transformers |
標籤 |
vit、bert、vision、caption、captioning、image |