🚀 ViSoBERT:用於越南社交媒體文本處理的預訓練語言模型 (EMNLP 2023 - 主會)
ViSoBERT 是用於越南社交媒體任務的先進語言模型,能夠高效處理越南社交媒體文本,為相關自然語言處理任務帶來了新的突破。
🚀 快速開始
安裝
安裝 transformers
和 SentencePiece
包:
pip install transformers
pip install SentencePiece
使用示例
from transformers import AutoModel, AutoTokenizer
import torch
model = AutoModel.from_pretrained('uitnlp/visobert')
tokenizer = AutoTokenizer.from_pretrained('uitnlp/visobert')
encoding = tokenizer('hào quang rực rỡ', return_tensors='pt')
with torch.no_grad():
output = model(**encoding)
✨ 主要特性
- ViSoBERT 是首個專門為越南社交媒體文本構建的單語 MLM(XLM - R 架構)。
- 在四個下游越南社交媒體任務中,ViSoBERT 超越了以前的單語、多語和多語社交媒體方法,取得了新的先進性能。
📚 詳細文檔
論文信息
ViSoBERT 的總體架構和實驗結果可在我們的 論文 中找到:
@inproceedings{nguyen-etal-2023-visobert,
title = "{V}i{S}o{BERT}: A Pre-Trained Language Model for {V}ietnamese Social Media Text Processing",
author = "Nguyen, Nam and
Phan, Thang and
Nguyen, Duc-Vu and
Nguyen, Kiet",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.315",
pages = "5191--5207",
abstract = "English and Chinese, known as resource-rich languages, have witnessed the strong development of transformer-based language models for natural language processing tasks. Although Vietnam has approximately 100M people speaking Vietnamese, several pre-trained models, e.g., PhoBERT, ViBERT, and vELECTRA, performed well on general Vietnamese NLP tasks, including POS tagging and named entity recognition. These pre-trained language models are still limited to Vietnamese social media tasks. In this paper, we present the first monolingual pre-trained language model for Vietnamese social media texts, ViSoBERT, which is pre-trained on a large-scale corpus of high-quality and diverse Vietnamese social media texts using XLM-R architecture. Moreover, we explored our pre-trained model on five important natural language downstream tasks on Vietnamese social media texts: emotion recognition, hate speech detection, sentiment analysis, spam reviews detection, and hate speech spans detection. Our experiments demonstrate that ViSoBERT, with far fewer parameters, surpasses the previous state-of-the-art models on multiple Vietnamese social media tasks. Our ViSoBERT model is available only for research purposes. Disclaimer: This paper contains actual comments on social networks that might be construed as abusive, offensive, or obscene.",
}
預訓練數據集
我們論文的預訓練數據集可在以下鏈接獲取:預訓練數據集
📄 許可證
使用 ViSoBERT 幫助產生已發表的研究成果或集成到其他軟件中時,請 引用 我們的論文。
⚠️ 重要提示
⚠️ 重要提示
論文中包含社交網絡上的實際評論,可能被視為辱罵、冒犯或淫穢內容。