🚀 MMARCO-bert-base-italian-uncased
這是一個 sentence-transformers 模型,它可以將句子和段落映射到 768 維的密集向量空間,可用於聚類或語義搜索等任務。
🚀 快速開始
安裝依賴
使用此模型,你需要安裝 sentence-transformers:
pip install -U sentence-transformers
使用示例
基礎用法(Sentence-Transformers)
from sentence_transformers import SentenceTransformer, util
query = "Quante persone vivono a Londra?"
docs = ["A Londra vivono circa 9 milioni di persone", "Londra è conosciuta per il suo quartiere finanziario"]
model = SentenceTransformer('nickprock/mmarco-bert-base-italian-uncased')
query_emb = model.encode(query)
doc_emb = model.encode(docs)
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
doc_score_pairs = list(zip(docs, scores))
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
for doc, score in doc_score_pairs:
print(score, doc)
高級用法(HuggingFace Transformers)
若未安裝 sentence-transformers,你可以這樣使用該模型:首先,將輸入傳遞給 Transformer 模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output.last_hidden_state
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def encode(texts):
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input, return_dict=True)
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
return embeddings
query = "Quante persone vivono a Londra?"
docs = ["A Londra vivono circa 9 milioni di persone", "Londra è conosciuta per il suo quartiere finanziario"]
tokenizer = AutoTokenizer.from_pretrained("nickprock/mmarco-bert-base-italian-uncased")
model = AutoModel.from_pretrained("nickprock/mmarco-bert-base-italian-uncased")
query_emb = encode(query)
doc_emb = encode(docs)
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()
doc_score_pairs = list(zip(docs, scores))
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
print("Query:", query)
for doc, score in doc_score_pairs:
print(score, doc)
✨ 主要特性
- 能夠將句子和段落映射到 768 維的密集向量空間。
- 可用於聚類或語義搜索等任務。
📚 詳細文檔
評估結果
要對該模型進行自動評估,請參考 Sentence Embeddings Benchmark:https://seb.sbert.net
訓練參數
該模型使用以下參數進行訓練:
數據加載器
torch.utils.data.dataloader.DataLoader
,長度為 6250,參數如下:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
損失函數
sentence_transformers.losses.TripletLoss.TripletLoss
,參數如下:
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
fit() 方法的參數
{
"epochs": 10,
"evaluation_steps": 500,
"evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 1500,
"warmup_steps": 6250,
"weight_decay": 0.01
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
🔧 技術細節
模型指標
任務類型 |
數據集 |
準確率 |
F1 值 |
餘弦相似度皮爾遜係數 |
餘弦相似度斯皮爾曼係數 |
歐幾里得距離皮爾遜係數 |
歐幾里得距離斯皮爾曼係數 |
曼哈頓距離皮爾遜係數 |
曼哈頓距離斯皮爾曼係數 |
分類 |
MTEB MassiveIntentClassification (it) |
55.06052454606589 |
54.014768121214104 |
- |
- |
- |
- |
- |
- |
分類 |
MTEB MassiveScenarioClassification (it) |
63.04303967720243 |
62.695230714417406 |
- |
- |
- |
- |
- |
- |
STS |
MTEB STS22 (it) |
- |
- |
64.73840574137837 |
69.44233124548987 |
67.65045364124317 |
69.586510471675 |
67.76125181623837 |
69.61010945802974 |
📄 許可證
該模型採用 MIT 許可證。