🚀 redis/langcache-embed-v1に基づくSentenceTransformer
このモデルは、tripletデータセットでredis/langcache-embed-v1から微調整されたsentence-transformersモデルです。文章や段落を768次元の密ベクトル空間にマッピングし、意味的な文章の類似性、意味検索、言い換えマイニング、テキスト分類、クラスタリングなどに利用できます。
✨ 主な機能
- 文章や段落を768次元の密ベクトル空間にマッピングすることができます。
- 意味的な文章の類似性、意味検索、言い換えマイニング、テキスト分類、クラスタリングなどのタスクに利用できます。
📦 インストール
まず、Sentence Transformersライブラリをインストールします。
pip install -U sentence-transformers
💻 使用例
基本的な使用法
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("redis/langcache-embed-v2")
sentences = [
'What are some examples of crimes understood as a moral turpitude?',
'What are some examples of crimes of moral turpitude?',
'What are some examples of crimes understood as a legal aptitude?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
📚 ドキュメント
モデルの詳細
モデルの説明
属性 |
詳情 |
モデルタイプ |
Sentence Transformer |
ベースモデル |
redis/langcache-embed-v1 |
最大シーケンス長 |
8192トークン |
出力次元数 |
768次元 |
類似度関数 |
コサイン類似度 |
学習データセット |
triplet |
モデルのソース
完全なモデルアーキテクチャ
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
学習の詳細
- データセット: triplet
- サイズ: 36,864個の学習サンプル
- 列:
anchor
、positive
、negative_1
、negative_2
、negative_3
- サンプル:
| anchor | positive | negative_1 | negative_2 | negative_3 |
| ---- | ---- | ---- | ---- | ---- |
|
Is life really what I make of it?
| Life is what you make it?
| Is life hardly what I take of it?
| Life is not entirely what I make of it.
| Is life not what I make of it?
|
| When you visit a website, can a person running the website see your IP address?
| Does every website I visit knows my public ip address?
| When you avoid a website, can a person hiding the website see your MAC address?
| When you send an email, can the recipient see your physical location?
| When you visit a website, a person running the website cannot see your IP address.
|
| What are some cool features about iOS 10?
| What are the best new features of iOS 10?
| iOS 10 received criticism for its initial bugs and performance issues, and some users found the redesigned apps less intuitive compared to previous versions.
| What are the drawbacks of using Android 14?
| iOS 10 was widely criticized for its bugs, removal of beloved features, and generally being a downgrade from previous versions.
|
- 損失関数:
MatryoshkaLoss
パラメータ:
{
"loss": "CachedMultipleNegativesRankingLoss",
"matryoshka_dims": [768,512,256,128,64],
"matryoshka_weights": [1,1,1,1,1],
"n_dims_per_step": -1
}
評価

引用
Redis Langcache-embedモデル
当社のモデルを使用するか、当社の研究成果を基に構築する場合は、以下のように引用することをお勧めします。
@inproceedings{langcache-embed-v1,
title = "Advancing Semantic Caching for LLMs with Domain-Specific Embeddings and Synthetic Data",
author = "Gill, Cechmanek, Hutcherson, Rajamohan, Agarwal, Gulzar, Singh, Dion",
month = "04",
year = "2025",
url = "https://arxiv.org/abs/2504.02268",
}
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}