quantized_by: bartowski
pipeline_tag: text-generation
base_model: facebook/KernelLLM
datasets:
- ScalingIntelligence/KernelBench
license: other
base_model_relation: quantized
facebookのKernelLLMに対するLlamacpp imatrix量子化
量子化にはllama.cppのリリースb5415を使用しています。
オリジナルモデル: https://huggingface.co/facebook/KernelLLM
すべての量子化はimatrixオプションを使用し、データセットはこちらから取得しました。
LM Studioで実行可能です。
llama.cppまたは他のllama.cppベースのプロジェクトで直接実行できます。
プロンプト形式
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
以下のファイルをダウンロード(ブランチ全体ではなく):
埋め込み/出力ウェイト
これらの量子化の一部(Q3_K_XL、Q4_K_Lなど)は、埋め込みと出力ウェイトを通常のデフォルトではなくQ8_0に量子化した標準的な量子化方法です。
huggingface-cliを使用したダウンロード
ダウンロード手順を表示するにはクリック
まず、huggingface-cliがインストールされていることを確認してください:
pip install -U "huggingface_hub[cli]"
次に、特定のファイルを指定してダウンロードできます:
huggingface-cli download bartowski/facebook_KernelLLM-GGUF --include "facebook_KernelLLM-Q4_K_M.gguf" --local-dir ./
モデルが50GBより大きい場合、複数のファイルに分割されています。それらをすべてローカルフォルダにダウンロードするには、次のコマンドを実行します:
huggingface-cli download bartowski/facebook_KernelLLM-GGUF --include "facebook_KernelLLM-Q8_0/*" --local-dir ./
新しいlocal-dir(facebook_KernelLLM-Q8_0)を指定するか、すべてをその場所(./)にダウンロードできます。
ARM/AVX情報
以前は、Q4_0_4_4/4_8/8_8をダウンロードし、これらのウェイトはメモリ内でインターリーブされ、ARMおよびAVXマシンでのパフォーマンスを向上させるために一度により多くのデータをロードしていました。
しかし、現在はウェイトの「オンライン再パッキング」と呼ばれる機能があります。詳細はこのPRを参照してください。Q4_0を使用し、ハードウェアがウェイトの再パッキングの恩恵を受ける場合、自動的にオンザフライで行われます。
llama.cppビルドb4282以降、Q4_0_X_Xファイルを実行できなくなり、代わりにQ4_0を使用する必要があります。
さらに、より良い品質を得たい場合は、このPRのおかげでIQ4_NLを使用できます。これもARM用にウェイトを再パッキングしますが、現時点では4_4のみです。ロード時間は遅くなるかもしれませんが、全体的な速度向上につながります。
Q4_0_X_X情報を表示(非推奨)
このセクションは、Q4_0とオンライン再パッキングを使用した場合の潜在的な理論上のパフォーマンス向上を示すために保持しています。
AVX2システム(EPYC7702)でのベンチマークを表示
モデル |
サイズ |
パラメータ |
バックエンド |
スレッド |
テスト |
t/s |
% (Q4_0比) |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
pp512 |
204.03 ± 1.03 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
pp1024 |
282.92 ± 0.19 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
pp2048 |
259.49 ± 0.44 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
tg128 |
39.12 ± 0.27 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
tg256 |
39.31 ± 0.69 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
tg512 |
40.52 ± 0.03 |
100% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
pp512 |
301.02 ± 1.74 |
147% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
pp1024 |
287.23 ± 0.20 |
101% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
pp2048 |
262.77 ± 1.81 |
101% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
tg128 |
18.80 ± 0.99 |
48% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
tg256 |
24.46 ± 3.04 |
83% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
tg512 |
36.32 ± 3.59 |
90% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
pp512 |
271.71 ± 3.53 |
133% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
pp1024 |
279.86 ± 45.63 |
100% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
pp2048 |
320.77 ± 5.00 |
124% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
tg128 |
43.51 ± 0.05 |
111% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
tg256 |
43.35 ± 0.09 |
110% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
tg512 |
42.60 ± 0.31 |
105% |
Q4_0_8_8はプロンプト処理に大きな向上をもたらし、テキスト生成にも小さな向上をもたらします。
どのファイルを選ぶべきか?
詳細はこちら
Artefact2によるさまざまなパフォーマンスを示すチャート付きの優れた説明がこちらにあります。
まず、実行できるモデルの大きさを把握する必要があります。これには、RAMやVRAMの量を把握する必要があります。
モデルを可能な限り高速に実行したい場合は、モデル全体をGPUのVRAMに収める必要があります。GPUの総VRAMより1-2GB小さい量子化を選択してください。
絶対的な最高品質を求めたい場合は、システムRAMとGPUのVRAMを合計し、同様に合計より1-2GB小さい量子化を選択してください。
次に、「I-quant」または「K-quant」を使用するかどうかを決定する必要があります。
あまり考えたくない場合は、K-quantのいずれかを選択してください。これらは「QX_K_X」形式で、例えばQ5_K_Mなどです。
さらに詳しく知りたい場合は、この非常に便利な機能チャートを確認してください:
llama.cpp機能マトリックス
基本的に、Q4以下を目指していて、cuBLAS(Nvidia)またはrocBLAS(AMD)を実行している場合は、I-quantを検討してください。これらは「IQX_X」形式で、例えばIQ3_Mなどです。これらは新しく、サイズに対してより優れたパフォーマンスを提供します。
これらのI-quantはCPUでも使用できますが、K-quant相当よりも遅くなるため、速度とパフォーマンスのトレードオフを決定する必要があります。
クレジット
imatrixキャリブレーションデータセットの作成に協力してくれたkalomazeとDampfに感謝します。
埋め込み/出力の実験にインスピレーションを与えてくれたZeroWwに感謝します。
私の仕事を支援してくれたLM Studioに感謝します。
私の仕事をサポートしたいですか?私のko-fiページを訪れてください: https://ko-fi.com/bartowski