Financial Rag Matryoshka
Alibaba-NLP/gte-large-en-v1.5をファインチューニングした金融専用センテンストランスフォーマーモデルで、金融文書検索タスクに特化
ダウンロード数 17.08k
リリース時間 : 7/8/2024
モデル概要
このモデルは文や段落を1024次元の密なベクトル空間にマッピングでき、意味的テキスト類似度、意味検索、言い換えマイニング、テキスト分類、クラスタリングなどのタスクに使用可能で、特に金融分野のパフォーマンスを最適化
モデル特徴
金融分野最適化
汎用性能を維持しつつ、特に金融文書検索タスク向けに最適化
高次元ベクトル空間
テキストを1024次元の密なベクトル空間にマッピング可能で、豊富な意味情報を捕捉
長文処理
最大8192トークンのシーケンス長をサポートし、長文書処理に適している
マトリョーシカ損失関数
MatryoshkaLossとMultipleNegativesRankingLossを組み合わせてトレーニングし、モデル性能を向上
モデル能力
意味的テキスト類似度計算
意味検索
言い換えマイニング
テキスト分類
テキストクラスタリング
金融文書検索
使用事例
金融情報検索
金融機関レポート検索
金融機関レポート内のキー情報を迅速に検索
金融文書検索タスクで優れたパフォーマンス
金融QAシステム
意味マッチングに基づく金融QAシステム構築
高精度な意味マッチング能力
汎用テキスト処理
文書類似度計算
異なる文書間の意味的類似度を計算
テキストクラスタリング
大量のテキストを自動分類・クラスタリング
base_model: Alibaba-NLP/gte-large-en-v1.5 datasets: [] language:
- en library_name: sentence-transformers license: apache-2.0 metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100 pipeline_tag: sentence-similarity tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4275
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss widget:
- source_sentence: The fundamental elements of Goldman Sachs’ robust risk culture
include governance, risk identification, measurement, mitigation, culture and
conduct, and infrastructure. They believe these elements work together to complement
and reinforce each other to produce a comprehensive view of risk management.
sentences:
- What are the financial highlights for Bank of America Corp. in its latest fiscal year report?
- What is Berkshire Hathaway's involvement in the energy sector?
- What is Goldman Sach’s approach towards maintaining a robust risk culture?
- source_sentence: HealthTech Inc.'s new drug for diabetes treatment, launched in
2021, contributed to approximately 30% of its total revenues for that year.
sentences:
- What is IBM's debt to equity ratio as of 2022?
- In what way does HealthTech Inc's new drug contribute to its revenue generation?
- What is the revenue breakdown of Alphabet for the year 2021?
- source_sentence: The driving factor behind Tesla’s 2023 growth was the surge in
demand for electric vehicles.
sentences:
- Why did McDonald's observe a decrease in overall revenue in 2023 relative to 2022?
- What key strategy did Walmart employ to boost its sales in 2016?
- What was the driving factor behind Tesla's growth in 2023?
- source_sentence: Pfizer is committed to ensuring that people around the world have
access to its medical products. In line with this commitment, Pfizer has implemented
programs such as donation drives, price reduction initiatives, and patient assistance
programs to aid those in need. Furthermore, through partnerships with NGOs and
governments, Pfizer strives to strengthen healthcare systems in underprivileged
regions.
sentences:
- What is the strategy of Pfizer to improve access to medicines in underprivileged areas?
- What percentage of growth in revenue did Adobe Systems report in June 2020?
- How is Citigroup differentiating itself among other banks?
- source_sentence: JP Morgan reported total deposits of $2.6 trillion in the year
ending December 31, 2023.
sentences:
- In the fiscal year 2023, what impact did the acquisition of T-Mobile bring to the revenue of AT&T?
- What is the primary source of revenue for the software company, Microsoft?
- What were JP Morgan's total deposits in 2023? model-index:
- name: gte-large-en-v1.5-financial-rag-matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1 value: 0.88 name: Cosine Accuracy@1
- type: cosine_accuracy@3 value: 0.96 name: Cosine Accuracy@3
- type: cosine_accuracy@5 value: 0.9866666666666667 name: Cosine Accuracy@5
- type: cosine_accuracy@10 value: 0.9955555555555555 name: Cosine Accuracy@10
- type: cosine_precision@1 value: 0.88 name: Cosine Precision@1
- type: cosine_precision@3 value: 0.32 name: Cosine Precision@3
- type: cosine_precision@5 value: 0.19733333333333336 name: Cosine Precision@5
- type: cosine_precision@10 value: 0.09955555555555556 name: Cosine Precision@10
- type: cosine_recall@1 value: 0.88 name: Cosine Recall@1
- type: cosine_recall@3 value: 0.96 name: Cosine Recall@3
- type: cosine_recall@5 value: 0.9866666666666667 name: Cosine Recall@5
- type: cosine_recall@10 value: 0.9955555555555555 name: Cosine Recall@10
- type: cosine_ndcg@10 value: 0.9426916896167131 name: Cosine Ndcg@10
- type: cosine_mrr@10 value: 0.9251851851851851 name: Cosine Mrr@10
- type: cosine_map@100 value: 0.925362962962963 name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1 value: 0.88 name: Cosine Accuracy@1
- type: cosine_accuracy@3 value: 0.96 name: Cosine Accuracy@3
- type: cosine_accuracy@5 value: 0.9866666666666667 name: Cosine Accuracy@5
- type: cosine_accuracy@10 value: 0.9911111111111112 name: Cosine Accuracy@10
- type: cosine_precision@1 value: 0.88 name: Cosine Precision@1
- type: cosine_precision@3 value: 0.32 name: Cosine Precision@3
- type: cosine_precision@5 value: 0.19733333333333336 name: Cosine Precision@5
- type: cosine_precision@10 value: 0.09911111111111114 name: Cosine Precision@10
- type: cosine_recall@1 value: 0.88 name: Cosine Recall@1
- type: cosine_recall@3 value: 0.96 name: Cosine Recall@3
- type: cosine_recall@5 value: 0.9866666666666667 name: Cosine Recall@5
- type: cosine_recall@10 value: 0.9911111111111112 name: Cosine Recall@10
- type: cosine_ndcg@10 value: 0.940825047039427 name: Cosine Ndcg@10
- type: cosine_mrr@10 value: 0.924 name: Cosine Mrr@10
- type: cosine_map@100 value: 0.9245274971941638 name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1 value: 0.8711111111111111 name: Cosine Accuracy@1
- type: cosine_accuracy@3 value: 0.96 name: Cosine Accuracy@3
- type: cosine_accuracy@5 value: 0.9866666666666667 name: Cosine Accuracy@5
- type: cosine_accuracy@10 value: 0.9911111111111112 name: Cosine Accuracy@10
- type: cosine_precision@1 value: 0.8711111111111111 name: Cosine Precision@1
- type: cosine_precision@3 value: 0.32 name: Cosine Precision@3
- type: cosine_precision@5 value: 0.19733333333333336 name: Cosine Precision@5
- type: cosine_precision@10 value: 0.09911111111111114 name: Cosine Precision@10
- type: cosine_recall@1 value: 0.8711111111111111 name: Cosine Recall@1
- type: cosine_recall@3 value: 0.96 name: Cosine Recall@3
- type: cosine_recall@5 value: 0.9866666666666667 name: Cosine Recall@5
- type: cosine_recall@10 value: 0.9911111111111112 name: Cosine Recall@10
- type: cosine_ndcg@10 value: 0.938126332642602 name: Cosine Ndcg@10
- type: cosine_mrr@10 value: 0.9202962962962962 name: Cosine Mrr@10
- type: cosine_map@100 value: 0.9207248677248678 name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1 value: 0.8755555555555555 name: Cosine Accuracy@1
- type: cosine_accuracy@3 value: 0.96 name: Cosine Accuracy@3
- type: cosine_accuracy@5 value: 0.9866666666666667 name: Cosine Accuracy@5
- type: cosine_accuracy@10 value: 0.9911111111111112 name: Cosine Accuracy@10
- type: cosine_precision@1 value: 0.8755555555555555 name: Cosine Precision@1
- type: cosine_precision@3 value: 0.32 name: Cosine Precision@3
- type: cosine_precision@5 value: 0.19733333333333336 name: Cosine Precision@5
- type: cosine_precision@10 value: 0.09911111111111114 name: Cosine Precision@10
- type: cosine_recall@1 value: 0.8755555555555555 name: Cosine Recall@1
- type: cosine_recall@3 value: 0.96 name: Cosine Recall@3
- type: cosine_recall@5 value: 0.9866666666666667 name: Cosine Recall@5
- type: cosine_recall@10 value: 0.9911111111111112 name: Cosine Recall@10
- type: cosine_ndcg@10 value: 0.9395718726230007 name: Cosine Ndcg@10
- type: cosine_mrr@10 value: 0.9222962962962963 name: Cosine Mrr@10
- type: cosine_map@100 value: 0.9227724867724867 name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1 value: 0.8666666666666667 name: Cosine Accuracy@1
- type: cosine_accuracy@3 value: 0.9555555555555556 name: Cosine Accuracy@3
- type: cosine_accuracy@5 value: 0.9866666666666667 name: Cosine Accuracy@5
- type: cosine_accuracy@10 value: 0.9911111111111112 name: Cosine Accuracy@10
- type: cosine_precision@1 value: 0.8666666666666667 name: Cosine Precision@1
- type: cosine_precision@3 value: 0.3185185185185185 name: Cosine Precision@3
- type: cosine_precision@5 value: 0.19733333333333336 name: Cosine Precision@5
- type: cosine_precision@10 value: 0.09911111111111114 name: Cosine Precision@10
- type: cosine_recall@1 value: 0.8666666666666667 name: Cosine Recall@1
- type: cosine_recall@3 value: 0.9555555555555556 name: Cosine Recall@3
- type: cosine_recall@5 value: 0.9866666666666667 name: Cosine Recall@5
- type: cosine_recall@10 value: 0.9911111111111112 name: Cosine Recall@10
- type: cosine_ndcg@10 value: 0.9346269584282435 name: Cosine Ndcg@10
- type: cosine_mrr@10 value: 0.9157037037037037 name: Cosine Mrr@10
- type: cosine_map@100 value: 0.9160403095943067 name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1 value: 0.8311111111111111 name: Cosine Accuracy@1
- type: cosine_accuracy@3 value: 0.96 name: Cosine Accuracy@3
- type: cosine_accuracy@5 value: 0.9733333333333334 name: Cosine Accuracy@5
- type: cosine_accuracy@10 value: 0.9911111111111112 name: Cosine Accuracy@10
- type: cosine_precision@1 value: 0.8311111111111111 name: Cosine Precision@1
- type: cosine_precision@3 value: 0.32 name: Cosine Precision@3
- type: cosine_precision@5 value: 0.19466666666666665 name: Cosine Precision@5
- type: cosine_precision@10 value: 0.09911111111111114 name: Cosine Precision@10
- type: cosine_recall@1 value: 0.8311111111111111 name: Cosine Recall@1
- type: cosine_recall@3 value: 0.96 name: Cosine Recall@3
- type: cosine_recall@5 value: 0.9733333333333334 name: Cosine Recall@5
- type: cosine_recall@10 value: 0.9911111111111112 name: Cosine Recall@10
- type: cosine_ndcg@10 value: 0.9208110890988729 name: Cosine Ndcg@10
- type: cosine_mrr@10 value: 0.8971957671957672 name: Cosine Mrr@10
- type: cosine_map@100 value: 0.8975242479721762 name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
financial-rag-matryoshka
Model finetuned for financial use-cases from Alibaba-NLP/gte-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
This model strives to excel tremendously in Financial Document Retrieval Tasks, concurrently preserving a maximum level of generalized performance.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-large-en-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("rbhatia46/gte-large-en-v1.5-financial-rag-matryoshka")
# Run inference
sentences = [
'JP Morgan reported total deposits of $2.6 trillion in the year ending December 31, 2023.',
"What were JP Morgan's total deposits in 2023?",
'What is the primary source of revenue for the software company, Microsoft?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_1024
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.88 |
cosine_accuracy@3 | 0.96 |
cosine_accuracy@5 | 0.9867 |
cosine_accuracy@10 | 0.9956 |
cosine_precision@1 | 0.88 |
cosine_precision@3 | 0.32 |
cosine_precision@5 | 0.1973 |
cosine_precision@10 | 0.0996 |
cosine_recall@1 | 0.88 |
cosine_recall@3 | 0.96 |
cosine_recall@5 | 0.9867 |
cosine_recall@10 | 0.9956 |
cosine_ndcg@10 | 0.9427 |
cosine_mrr@10 | 0.9252 |
cosine_map@100 | 0.9254 |
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.88 |
cosine_accuracy@3 | 0.96 |
cosine_accuracy@5 | 0.9867 |
cosine_accuracy@10 | 0.9911 |
cosine_precision@1 | 0.88 |
cosine_precision@3 | 0.32 |
cosine_precision@5 | 0.1973 |
cosine_precision@10 | 0.0991 |
cosine_recall@1 | 0.88 |
cosine_recall@3 | 0.96 |
cosine_recall@5 | 0.9867 |
cosine_recall@10 | 0.9911 |
cosine_ndcg@10 | 0.9408 |
cosine_mrr@10 | 0.924 |
cosine_map@100 | 0.9245 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8711 |
cosine_accuracy@3 | 0.96 |
cosine_accuracy@5 | 0.9867 |
cosine_accuracy@10 | 0.9911 |
cosine_precision@1 | 0.8711 |
cosine_precision@3 | 0.32 |
cosine_precision@5 | 0.1973 |
cosine_precision@10 | 0.0991 |
cosine_recall@1 | 0.8711 |
cosine_recall@3 | 0.96 |
cosine_recall@5 | 0.9867 |
cosine_recall@10 | 0.9911 |
cosine_ndcg@10 | 0.9381 |
cosine_mrr@10 | 0.9203 |
cosine_map@100 | 0.9207 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8756 |
cosine_accuracy@3 | 0.96 |
cosine_accuracy@5 | 0.9867 |
cosine_accuracy@10 | 0.9911 |
cosine_precision@1 | 0.8756 |
cosine_precision@3 | 0.32 |
cosine_precision@5 | 0.1973 |
cosine_precision@10 | 0.0991 |
cosine_recall@1 | 0.8756 |
cosine_recall@3 | 0.96 |
cosine_recall@5 | 0.9867 |
cosine_recall@10 | 0.9911 |
cosine_ndcg@10 | 0.9396 |
cosine_mrr@10 | 0.9223 |
cosine_map@100 | 0.9228 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8667 |
cosine_accuracy@3 | 0.9556 |
cosine_accuracy@5 | 0.9867 |
cosine_accuracy@10 | 0.9911 |
cosine_precision@1 | 0.8667 |
cosine_precision@3 | 0.3185 |
cosine_precision@5 | 0.1973 |
cosine_precision@10 | 0.0991 |
cosine_recall@1 | 0.8667 |
cosine_recall@3 | 0.9556 |
cosine_recall@5 | 0.9867 |
cosine_recall@10 | 0.9911 |
cosine_ndcg@10 | 0.9346 |
cosine_mrr@10 | 0.9157 |
cosine_map@100 | 0.916 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8311 |
cosine_accuracy@3 | 0.96 |
cosine_accuracy@5 | 0.9733 |
cosine_accuracy@10 | 0.9911 |
cosine_precision@1 | 0.8311 |
cosine_precision@3 | 0.32 |
cosine_precision@5 | 0.1947 |
cosine_precision@10 | 0.0991 |
cosine_recall@1 | 0.8311 |
cosine_recall@3 | 0.96 |
cosine_recall@5 | 0.9733 |
cosine_recall@10 | 0.9911 |
cosine_ndcg@10 | 0.9208 |
cosine_mrr@10 | 0.8972 |
cosine_map@100 | 0.8975 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,275 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 15 tokens
- mean: 44.74 tokens
- max: 114 tokens
- min: 9 tokens
- mean: 18.12 tokens
- max: 32 tokens
- Samples:
positive anchor At the end of fiscal year 2023, Exxon Mobil reported a debt-to-equity ratio of 0.32, implying that the company used more equity than debt in its capital structure.
What was the debt-to-equity ratio for Exxon Mobil at the end of fiscal year 2023?
Amazon Web Services (AWS) generated $12.7 billion in net sales in the fourth quarter of 2020, up 28% from the same period of the previous year. It accounted for about 10% of Amazon’s total net sales for the quarter.
How did Amazon's AWS segment perform in the fourth quarter of 2020?
JPMorgan Chase generates revenues by providing a wide range of banking and financial services. These include investment banking (M&As, advisory), consumer and community banking (home mortgages, auto loans), commercial banking, and asset and wealth management.
What are the key revenue sources for JPMorgan Chase?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 10lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|---|
0.9552 | 8 | - | 0.9090 | 0.8848 | 0.8992 | 0.9052 | 0.8775 | 0.9030 |
1.1940 | 10 | 0.4749 | - | - | - | - | - | - |
1.9104 | 16 | - | 0.9170 | 0.9095 | 0.9109 | 0.9201 | 0.8961 | 0.9212 |
2.3881 | 20 | 0.0862 | - | - | - | - | - | - |
2.9851 | 25 | - | 0.9190 | 0.9071 | 0.9160 | 0.9278 | 0.8998 | 0.9234 |
3.5821 | 30 | 0.0315 | - | - | - | - | - | - |
3.9403 | 33 | - | 0.9183 | 0.9053 | 0.9122 | 0.9287 | 0.8998 | 0.9183 |
4.7761 | 40 | 0.0184 | - | - | - | - | - | - |
4.8955 | 41 | - | 0.9225 | 0.9125 | 0.9164 | 0.9260 | 0.8985 | 0.9220 |
5.9701 | 50 | 0.0135 | 0.9268 | 0.9132 | 0.9208 | 0.9257 | 0.8961 | 0.9271 |
6.9254 | 58 | - | 0.9254 | 0.9158 | 0.9202 | 0.9212 | 0.8938 | 0.9213 |
7.1642 | 60 | 0.0123 | - | - | - | - | - | - |
8.0 | 67 | - | 0.9253 | 0.916 | 0.9228 | 0.9207 | 0.8972 | 0.9243 |
8.3582 | 70 | 0.01 | - | - | - | - | - | - |
8.9552 | 75 | - | 0.9254 | 0.9160 | 0.9213 | 0.9207 | 0.9005 | 0.9245 |
9.5522 | 80 | 0.0088 | 0.9254 | 0.9160 | 0.9228 | 0.9207 | 0.8975 | 0.9245 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 は100以上の言語をサポートする多言語文埋め込みモデルで、文の類似度と特徴抽出タスクに特化しています。
テキスト埋め込み
Transformers 複数言語対応

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
MS Marcoパッセージランキングタスクで訓練されたクロスエンコーダモデル、情報検索におけるクエリ-パッセージ関連性スコアリング用
テキスト埋め込み 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
蒸留技術に基づくスパース検索モデルで、OpenSearch向けに最適化されており、推論不要のドキュメントエンコーディングをサポートし、検索関連性と効率性においてV1版を上回ります
テキスト埋め込み
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
PubMedBERTに基づく生物医学エンティティ表現モデルで、自己アライメント事前学習により意味関係の捕捉を最適化します。
テキスト埋め込み 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Largeは強力なセンテンストランスフォーマーモデルで、文の類似度とテキスト埋め込みタスクに特化しており、複数のベンチマークテストで優れた性能を発揮します。
テキスト埋め込み 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 は英語の文章変換モデルで、文章類似度タスクに特化しており、複数のテキスト埋め込みベンチマークで優れた性能を発揮します。
テキスト埋め込み
Transformers 複数言語対応

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base は50以上の言語をサポートする多言語文埋め込みモデルで、文類似度計算などのタスクに適しています。
テキスト埋め込み
Transformers 複数言語対応

G
Alibaba-NLP
1.2M
246
Polybert
polyBERTは、完全に機械駆動の超高速ポリマー情報学を実現するための化学言語モデルです。PSMILES文字列を600次元の密なフィンガープリントにマッピングし、ポリマー化学構造を数値形式で表現します。
テキスト埋め込み
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
トルコ語BERTベースの文埋め込みモデルで、意味的類似性タスクに最適化
テキスト埋め込み
Transformers その他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
BAAI/bge-small-en-v1.5モデルを微調整したテキスト埋め込みモデルで、MEDIデータセットとMTEB分類タスクデータセットで訓練され、検索タスクのクエリエンコーディング能力を最適化しました。
テキスト埋め込み
Safetensors 英語
G
avsolatorio
945.68k
29
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98