🚀 ViTamin-XL-256pxのモデルカード
ViTamin の公式Hugging Faceモデルです。このモデルは、2024年のCVPR論文から派生しています。
ViTamin: Design Scalable Vision Models in the Vision-language Era
✨ Jieneng Chen、 Qihang Yu、 Xiaohui Shen、 Alan Yuille 、 Liang-Chieh Chen
🏠 Johns Hopkins University、 Bytedance
🚀 クイックスタート
transformers.AutoModelを使用してHuggingFaceからモデルをロードする方法は以下の通りです。
import torch
import open_clip
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModel.from_pretrained(
'jienengchen/ViTamin-XL-256px',
trust_remote_code=True).to(device).eval()
image = Image.open('./image.png').convert('RGB')
image_processor = CLIPImageProcessor.from_pretrained('jienengchen/ViTamin-XL-256px')
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()
tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K')
text = tokenizer(["a photo of vitamin", "a dog", "a cat"]).to(device)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features, text_features, logit_scale = model(pixel_values, text)
text_probs = (100.0 * image_features @ text_features.to(torch.float).T).softmax(dim=-1)
print("Label probs:", text_probs)
✨ 主な機能
DataComp-1BでのCLIP事前学習の主要結果
画像エンコーダ |
画像サイズ |
パッチ数 |
テキストエンコーダの深さ/幅 |
見たサンプル数 (B) |
学習可能なパラメータ(画像+テキスト) (M) |
MACs(画像+テキスト) (G) |
ImageNet精度 |
38データセットの平均 |
ImageNet分布シフト |
VTAB |
検索 |
ViTamin-L |
224 |
196 |
12/768 |
12.8 |
333.3+123.7 |
72.6+6.6 |
80.8 |
66.7 |
69.8 |
65.3 |
60.3 |
ViTamin-L |
256 |
256 |
12/768 |
12.8+0.2 |
333.4+123.7 |
94.8+6.6 |
81.2 |
67.0 |
71.1 |
65.3 |
61.2 |
ViTamin-L |
336 |
441 |
12/768 |
12.8+0.2 |
333.6+123.7 |
163.4+6.6 |
81.6 |
67.0 |
72.1 |
64.4 |
61.6 |
ViTamin-L |
384 |
576 |
12/768 |
12.8+0.2 |
333.7+123.7 |
213.4+6.6 |
81.8 |
67.2 |
72.4 |
64.7 |
61.8 |
ViTamin-L2 |
224 |
196 |
24/1024 |
12.8 |
333.6+354.0 |
72.6+23.3 |
80.9 |
66.4 |
70.6 |
63.4 |
61.5 |
ViTamin-L2 |
256 |
256 |
24/1024 |
12.8+0.5 |
333.6+354.0 |
94.8+23.3 |
81.5 |
67.4 |
71.9 |
64.1 |
63.1 |
ViTamin-L2 |
336 |
441 |
24/1024 |
12.8+0.5 |
333.8+354.0 |
163.4+23.3 |
81.8 |
67.8 |
73.0 |
64.5 |
63.6 |
ViTamin-L2 |
384 |
576 |
24/1024 |
12.8+0.5 |
334.0+354.0 |
213.4+23.3 |
82.1 |
68.1 |
73.4 |
64.8 |
63.7 |
ViTamin-XL |
256 |
256 |
27/1152 |
12.8+0.5 |
436.1+488.7 |
125.3+33.1 |
82.1 |
67.6 |
72.3 |
65.4 |
62.7 |
ViTamin-XL |
384 |
576 |
27/1152 |
12.8+0.5 |
436.1+488.7 |
281.9+33.1 |
82.6 |
68.1 |
73.6 |
65.6 |
63.8 |
ViTamin-XL |
256 |
256 |
27/1152 |
40 |
436.1+488.7 |
125.3+33.1 |
82.3 |
67.5 |
72.8 |
64.0 |
62.1 |
ViTamin-XL |
336 |
441 |
27/1152 |
40+1 |
436.1+488.7 |
215.9+33.1 |
82.7 |
68.0 |
73.9 |
64.1 |
62.6 |
ViTamin-XL |
384 |
576 |
27/1152 |
40+1 |
436.1+488.7 |
281.9+33.1 |
82.9 |
68.1 |
74.1 |
64.0 |
62.5 |
下流タスクの主要結果
オープンボキャブラリ検出
画像エンコーダ |
検出器 |
OV-COCO (AP50novel) |
OV-LVIS (APr) |
ViT-L/14 |
Sliding F-ViT |
36.1 |
32.5 |
ViTamin-L |
Sliding F-ViT |
37.5 |
35.6 |
オープンボキャブラリセグメンテーション
画像エンコーダ |
セグメンター |
ADE |
Cityscapes |
MV |
A-150 |
A-847 |
PC-459 |
PC-59 |
PAS-21 |
ViT-L/14 |
Sliding FC-CLIP |
24.6 |
40.7 |
16.5 |
31.8 |
14.3 |
18.3 |
55.1 |
81.5 |
ViTamin-L |
Sliding FC-CLIP |
27.3 |
44.0 |
18.2 |
35.6 |
16.1 |
20.4 |
58.4 |
83.4 |
注: パノプティックデータセット(ADE、CityScapes、MV)はPQメトリックを使用しています。セマンティックデータセット(A-150、A-847、PC-459、PC-59、PAS-21)はmIoUメトリックを使用しています。
大規模マルチモーダルモデル
画像エンコーダ |
画像サイズ |
VQAv2 |
GQA |
VizWiz |
SQA |
T-VQA |
POPE |
MME |
MM-Bench |
MM-B-CN |
SEED |
LLaVA-Wild |
MM-Vet |
ViTamin-L |
336 |
78.4 |
61.6 |
51.1 |
66.9 |
58.7 |
84.6 |
1421 |
65.4 |
58.4 |
57.7 |
64.5 |
33.6 |
ViTamin-L |
384 |
78.9 |
61.6 |
55.4 |
67.6 |
59.8 |
85.5 |
1447 |
64.5 |
58.3 |
57.9 |
66.1 |
33.6 |
📄 ライセンス
このプロジェクトはMITライセンスの下でライセンスされています。
📚 ドキュメント
ViTaminの引用
@inproceedings{chen2024vitamin,
title={ViTamin: Design Scalable Vision Models in the Vision-language Era},
author={Chen, Jieneng and Yu, Qihang and Shen, Xiaohui and Yuille, ALan and Chen, Liang-Chieh},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2024}
}