Scitopicnomicembed
nomic-ai/nomic-embed-text-v1.5をファインチューニングした文変換モデルで、科学文献の主題類似性タスクに最適化
ダウンロード数 114
リリース時間 : 2/2/2025
モデル概要
このモデルは文と段落を768次元の密なベクトル空間にマッピングし、意味的テキスト類似性、意味検索、言い換えマイニングなどのタスクに適しており、特に科学文献の主題分析に最適化されています。
モデル特徴
長文処理能力
最大8192トークンのシーケンス長をサポートし、科学文献の長い段落の処理に適しています
科学主題最適化
SciTopicTripletsデータセットでファインチューニングされており、科学文献の主題類似性分析に特に優れています
多レベル埋め込み
MatryoshkaLossを使用して訓練され、768/384/256/128/64次元の多レベル埋め込みを生成できます
モデル能力
意味的テキスト類似性計算
科学文献の主題マッチング
意味検索
テキストクラスタリング
特徴抽出
使用事例
学術研究
文献推薦システム
内容の類似性に基づいて研究者に関連文献を推薦
SciGen評価セットで0.5664の正規化割引累積利益を達成
研究主題分析
科学文献中の関連主題を識別しクラスタリング
情報検索
科学文献検索
科学データベースの意味検索機能を改善
精度@10指標で0.9893を達成
language:
- en license: apache-2.0 tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:35964
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss base_model: nomic-ai/nomic-embed-text-v1.5 widget:
- source_sentence: Despite the crucial role of phosphorus in global food production,
there is a lack of comprehensive analysis on the economic and policy aspects of
phosphorus supply and demand, highlighting a significant knowledge gap in the
field of natural resource economics.
sentences:
- The human brain is intrinsically organized into dynamic, anticorrelated functional networks
- 'The story of phosphorus: Global food security and food for thought'
- Identifying a knowledge gap in the field of study
- source_sentence: Despite the comprehensive data sources used in this analysis, it
is important to note that uncertainties remain in the estimation of global precipitation,
particularly in data-sparse regions, and careful interpretation of the findings
is advised.
sentences:
- The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar
- Advising cautious interpretation of the findings
- 'Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs'
- source_sentence: The study found that participants' value functions were characterized
by loss aversion, risk aversion, and the concavity of the utility function in
gains and the convexity in losses.
sentences:
- Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism
- 'Prospect theory: An analysis of decision under risk'
- Summarising the results section
- source_sentence: Further research is needed to explore the potential role of individual
amino acids in optimizing protein intake and promoting optimal health outcomes.
sentences:
- Suggestions for future work
- Validation of a modified Early Warning Score in medical admissions
- Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids
- source_sentence: The IANA Task Force (2021) builds upon previous research suggesting
that slower gait speed is associated with increased risk of adverse outcomes in
older adults (Levine et al., 2015; Schoenfeld et al., 2016).
sentences:
- 'Transdisciplinary research in sustainability science: practice, principles, and challenges'
- Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force
- Referring to another writer’s idea(s) or position datasets:
- Corran/SciTopicTriplets pipeline_tag: sentence-similarity library_name: sentence-transformers metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100 model-index:
- name: nomic-ai/nomic-embed-text-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: SciGen Eval Set
type: SciGen-Eval-Set
metrics:
- type: cosine_accuracy@1 value: 0.19750889679715303 name: Cosine Accuracy@1
- type: cosine_accuracy@3 value: 0.5547153024911032 name: Cosine Accuracy@3
- type: cosine_accuracy@5 value: 0.81605871886121 name: Cosine Accuracy@5
- type: cosine_accuracy@10 value: 0.9893238434163701 name: Cosine Accuracy@10
- type: cosine_precision@1 value: 0.19750889679715303 name: Cosine Precision@1
- type: cosine_precision@3 value: 0.1849051008303677 name: Cosine Precision@3
- type: cosine_precision@5 value: 0.16321174377224199 name: Cosine Precision@5
- type: cosine_precision@10 value: 0.098932384341637 name: Cosine Precision@10
- type: cosine_recall@1 value: 0.19750889679715303 name: Cosine Recall@1
- type: cosine_recall@3 value: 0.5547153024911032 name: Cosine Recall@3
- type: cosine_recall@5 value: 0.81605871886121 name: Cosine Recall@5
- type: cosine_recall@10 value: 0.9893238434163701 name: Cosine Recall@10
- type: cosine_ndcg@10 value: 0.5663698287874538 name: Cosine Ndcg@10
- type: cosine_mrr@10 value: 0.43265442297915546 name: Cosine Mrr@10
- type: cosine_map@100 value: 0.433292401944685 name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: SciGen Eval Set
type: SciGen-Eval-Set
metrics:
nomic-ai/nomic-embed-text-v1.5
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the sci_topic_triplets dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Corran/SciTopicNomicEmbed")
# Run inference
sentences = [
'The IANA Task Force (2021) builds upon previous research suggesting that slower gait speed is associated with increased risk of adverse outcomes in older adults (Levine et al., 2015; Schoenfeld et al., 2016).',
'Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force',
'Referring to another writer’s idea(s) or position',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
SciGen-Eval-Set
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1975 |
cosine_accuracy@3 | 0.5547 |
cosine_accuracy@5 | 0.8161 |
cosine_accuracy@10 | 0.9893 |
cosine_precision@1 | 0.1975 |
cosine_precision@3 | 0.1849 |
cosine_precision@5 | 0.1632 |
cosine_precision@10 | 0.0989 |
cosine_recall@1 | 0.1975 |
cosine_recall@3 | 0.5547 |
cosine_recall@5 | 0.8161 |
cosine_recall@10 | 0.9893 |
cosine_ndcg@10 | 0.5664 |
cosine_mrr@10 | 0.4327 |
cosine_map@100 | 0.4333 |
Training Details
Training Dataset
sci_topic_triplets
- Dataset: sci_topic_triplets at 8bf9936
- Size: 35,964 training samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 17 tokens
- mean: 40.37 tokens
- max: 93 tokens
- min: 5 tokens
- mean: 18.75 tokens
- max: 56 tokens
- min: 5 tokens
- mean: 10.74 tokens
- max: 23 tokens
- Samples:
query positive negative This study provides comprehensive estimates of life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death and 195 countries and territories from 1980 to 2015, allowing for a detailed understanding of global health trends and patterns over the past four decades.
Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015
Explaining the significance of the current study
This paper explores the relationship between the expected value and the volatility of the nominal excess return on stocks using a econometric approach.
On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks
Stating the focus, aim, or argument of a short paper
Despite the increasing attention given to the role of audit committees and board of directors in mitigating earnings management, several studies have reported inconclusive or even negative findings.
Audit committee, board of director characteristics, and earnings management
General reference to previous research or scholarship: highlighting negative outcomes
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 384, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
sci_topic_triplets
- Dataset: sci_topic_triplets at 8bf9936
- Size: 4,495 evaluation samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 18 tokens
- mean: 40.1 tokens
- max: 87 tokens
- min: 5 tokens
- mean: 18.75 tokens
- max: 58 tokens
- min: 5 tokens
- mean: 10.74 tokens
- max: 23 tokens
- Samples:
query positive negative In this cluster-randomised controlled trial, the authors aimed to evaluate the effectiveness of introducing the Medical Emergency Team (MET) system in reducing response times and improving patient outcomes in emergency departments.
Introduction of the medical emergency team (MET) system: a cluster-randomised controlled trial
Some ways of introducing quotations
In the data collection phase of our study, we employed both surveys and interviews as research methods. Specifically, we administered surveys to 200 participants and conducted interviews with 10 key industry experts to gather proportional data on various aspects of management science practices.
Research Methodology: A Step-by-Step Guide for Beginners
Surveys and interviews: Reporting proportions
Several density functional theory (DFT) based chemical reactivity indexes, such as the Fukui functions and the electrophilic and nucleophilic indices, are discussed in detail for their ability to predict chemical reactivity.
Chemical reactivity indexes in density functional theory
General comments on the relevant literature
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 384, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256learning_rate
: 2e-05num_train_epochs
: 10warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | SciGen-Eval-Set_cosine_ndcg@10 |
---|---|---|---|---|
0 | 0 | - | - | 0.5454 |
0.1418 | 20 | 4.4872 | 3.1379 | 0.5468 |
0.2837 | 40 | 2.241 | 1.7162 | 0.5497 |
0.4255 | 60 | 1.5937 | 1.4834 | 0.5524 |
0.5674 | 80 | 1.5356 | 1.3911 | 0.5541 |
0.7092 | 100 | 1.4106 | 1.3277 | 0.5549 |
0.8511 | 120 | 1.2612 | 1.2919 | 0.5561 |
0.9929 | 140 | 1.3147 | 1.2642 | 0.5572 |
1.1348 | 160 | 1.1527 | 1.2529 | 0.5582 |
1.2766 | 180 | 1.2103 | 1.2388 | 0.5593 |
1.4184 | 200 | 1.2407 | 1.2235 | 0.5598 |
1.5603 | 220 | 1.1356 | 1.2101 | 0.5607 |
1.7021 | 240 | 1.1644 | 1.1938 | 0.5605 |
1.8440 | 260 | 1.1927 | 1.1864 | 0.5612 |
1.9858 | 280 | 1.1909 | 1.1800 | 0.5613 |
2.1277 | 300 | 1.0549 | 1.1785 | 0.5620 |
2.2695 | 320 | 1.0745 | 1.1755 | 0.5630 |
2.4113 | 340 | 1.1485 | 1.1656 | 0.5637 |
2.5532 | 360 | 1.1159 | 1.1654 | 0.5637 |
2.6950 | 380 | 1.0686 | 1.1623 | 0.5640 |
2.8369 | 400 | 1.1436 | 1.1594 | 0.5632 |
2.9787 | 420 | 1.0899 | 1.1534 | 0.5644 |
3.1206 | 440 | 1.0756 | 1.1512 | 0.5647 |
3.2624 | 460 | 1.0203 | 1.1536 | 0.5645 |
3.4043 | 480 | 1.1073 | 1.1564 | 0.5650 |
3.5461 | 500 | 1.0423 | 1.1594 | 0.5651 |
3.6879 | 520 | 1.069 | 1.1514 | 0.5652 |
3.8298 | 540 | 1.0101 | 1.1538 | 0.5645 |
3.9716 | 560 | 1.0685 | 1.1647 | 0.5650 |
4.1135 | 580 | 1.0326 | 1.1618 | 0.5653 |
4.2553 | 600 | 1.0729 | 1.1587 | 0.5648 |
4.3972 | 620 | 1.0417 | 1.1515 | 0.5655 |
4.5390 | 640 | 1.0438 | 1.1528 | 0.5657 |
4.6809 | 660 | 1.025 | 1.1433 | 0.5660 |
4.8227 | 680 | 1.0526 | 1.1382 | 0.5662 |
4.9645 | 700 | 1.0485 | 1.1392 | 0.5663 |
5.1064 | 720 | 1.0348 | 1.1411 | 0.5665 |
5.2482 | 740 | 1.1001 | 1.1511 | 0.5663 |
5.3901 | 760 | 1.0926 | 1.1625 | 0.5662 |
5.5319 | 780 | 1.0885 | 1.1487 | 0.5662 |
5.6738 | 800 | 1.0942 | 1.1492 | 0.5665 |
5.8156 | 820 | 1.0457 | 1.1465 | 0.5666 |
5.9574 | 840 | 1.0479 | 1.1461 | 0.5664 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 は100以上の言語をサポートする多言語文埋め込みモデルで、文の類似度と特徴抽出タスクに特化しています。
テキスト埋め込み
Transformers 複数言語対応

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
MS Marcoパッセージランキングタスクで訓練されたクロスエンコーダモデル、情報検索におけるクエリ-パッセージ関連性スコアリング用
テキスト埋め込み 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
蒸留技術に基づくスパース検索モデルで、OpenSearch向けに最適化されており、推論不要のドキュメントエンコーディングをサポートし、検索関連性と効率性においてV1版を上回ります
テキスト埋め込み
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
PubMedBERTに基づく生物医学エンティティ表現モデルで、自己アライメント事前学習により意味関係の捕捉を最適化します。
テキスト埋め込み 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Largeは強力なセンテンストランスフォーマーモデルで、文の類似度とテキスト埋め込みタスクに特化しており、複数のベンチマークテストで優れた性能を発揮します。
テキスト埋め込み 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 は英語の文章変換モデルで、文章類似度タスクに特化しており、複数のテキスト埋め込みベンチマークで優れた性能を発揮します。
テキスト埋め込み
Transformers 複数言語対応

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base は50以上の言語をサポートする多言語文埋め込みモデルで、文類似度計算などのタスクに適しています。
テキスト埋め込み
Transformers 複数言語対応

G
Alibaba-NLP
1.2M
246
Polybert
polyBERTは、完全に機械駆動の超高速ポリマー情報学を実現するための化学言語モデルです。PSMILES文字列を600次元の密なフィンガープリントにマッピングし、ポリマー化学構造を数値形式で表現します。
テキスト埋め込み
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
トルコ語BERTベースの文埋め込みモデルで、意味的類似性タスクに最適化
テキスト埋め込み
Transformers その他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
BAAI/bge-small-en-v1.5モデルを微調整したテキスト埋め込みモデルで、MEDIデータセットとMTEB分類タスクデータセットで訓練され、検索タスクのクエリエンコーディング能力を最適化しました。
テキスト埋め込み
Safetensors 英語
G
avsolatorio
945.68k
29
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98