🚀 Meta Llama 3.1 モデル
このリポジトリは、Meta AIによってリリースされたFP16半精度の公式バージョンであるmeta-llama/Meta-Llama-3.1-70B-Instruct
のコミュニティ主導の量子化バージョンです。Meta Llama 3.1は、多言語の大規模言語モデルで、8B、70B、405Bのサイズの事前学習済みおよび命令調整済みの生成モデルがあります。
🚀 クイックスタート
このセクションでは、Meta Llama 3.1 70B Instruct AWQのINT4モデルを使用するための基本的な手順を説明します。
✨ 主な機能
- 多言語対応: 英語、ドイツ語、フランス語、イタリア語、ポルトガル語、ヒンディー語、スペイン語、タイ語など、複数の言語に対応しています。
- 量子化: AutoAWQを使用して、FP16からINT4に量子化されており、VRAMの使用量を大幅に削減します。
📦 インストール
🤗 Transformers
pip install -q --upgrade transformers autoawq accelerate
AutoAWQ
pip install -q --upgrade transformers autoawq accelerate
🤗 Text Generation Inference (TGI)
pip install -q --upgrade huggingface_hub
huggingface-cli login
vLLM
Dockerをインストールする必要があります(インストール手順を参照)。
💻 使用例
基本的な使用法
🤗 Transformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig
model_id = "hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4"
quantization_config = AwqConfig(
bits=4,
fuse_max_seq_len=512,
do_fuse=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
quantization_config=quantization_config
)
prompt = [
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
{"role": "user", "content": "What's Deep Learning?"},
]
inputs = tokenizer.apply_chat_template(
prompt,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0])
AutoAWQ
import torch
from awq import AutoAWQForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoAWQForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
)
prompt = [
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
{"role": "user", "content": "What's Deep Learning?"},
]
inputs = tokenizer.apply_chat_template(
prompt,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0])
🤗 Text Generation Inference (TGI)
docker run --gpus all --shm-size 1g -ti -p 8080:80 \
-v hf_cache:/data \
-e MODEL_ID=hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4 \
-e NUM_SHARD=4 \
-e QUANTIZE=awq \
-e HF_TOKEN=$(cat ~/.cache/huggingface/token) \
-e MAX_INPUT_LENGTH=4000 \
-e MAX_TOTAL_TOKENS=4096 \
ghcr.io/huggingface/text-generation-inference:2.2.0
vLLM
docker run --runtime nvidia --gpus all --ipc=host -p 8000:8000 \
-v hf_cache:/root/.cache/huggingface \
vllm/vllm-openai:latest \
--model hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4 \
--tensor-parallel-size 4 \
--max-model-len 4096
高度な使用法
🤗 Text Generation Inference (TGI)
curl 0.0.0.0:8080/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is Deep Learning?"
}
],
"max_tokens": 128
}'
vLLM
curl 0.0.0.0:8000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is Deep Learning?"
}
],
"max_tokens": 128
}'
🔧 技術詳細
量子化再現
Llama 3.1 70B InstructをAutoAWQを使用して量子化するには、少なくともモデル全体を収めるのに十分なCPU RAM(約140GiB)と、40GiBのVRAMを持つNVIDIA GPUが必要です。
pip install -q --upgrade transformers autoawq accelerate
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_path = "meta-llama/Meta-Llama-3.1-70B-Instruct"
quant_path = "hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4"
quant_config = {
"zero_point": True,
"q_group_size": 128,
"w_bit": 4,
"version": "GEMM",
}
model = AutoAWQForCausalLM.from_pretrained(
model_path, low_cpu_mem_usage=True, use_cache=False,
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model.quantize(tokenizer, quant_config=quant_config)
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
print(f'Model is quantized and saved at "{quant_path}"')
📄 ライセンス
このモデルは、llama3.1のライセンスに基づいて提供されています。