Segformer B0 Finetuned Segments Construction 1
MIT-B0アーキテクチャに基づき建築シーンデータセットでファインチューニングされた分割モデルで、壁やドア・窓などの建築要素の識別に優れています
ダウンロード数 146
リリース時間 : 3/12/2023
モデル概要
このモデルは建築シーンに最適化された画像分割モデルで、建築平面図の様々な構造要素を識別できます
モデル特徴
建築シーン最適化
建築平面図要素(壁/ドア・窓など)に特化して最適化訓練されています
軽量アーキテクチャ
SegFormer-B0の軽量設計を採用し、リソースが限られた環境に適しています
多要素認識
目盛り、壁、床、ドアなど複数の建築要素を同時に識別可能
モデル能力
建築平面図分割
壁検出
ドア・窓位置特定
建築要素認識
使用事例
建築設計
平面図自動注釈
建築図面の構造要素を自動認識し注釈を生成
壁認識精度96.44%、ドア認識精度65.25%
施工進捗監視
現場写真から建築要素の完成状況を分析
インテリアデザイン
空間レイアウト分析
室内のドア・窓位置と壁構造を識別
🚀 segformer-b0-finetuned-segments-construction-1
このモデルは、nvidia/mit-b0 を yiming19/construction_place データセットでファインチューニングしたバージョンです。評価セットでは、以下の結果を達成しています。
- 損失: 0.2796
- 平均IoU: 0.3218
- 平均精度: 0.5305
- 全体精度: 0.9276
- 未ラベル精度: nan
- 定規精度: 0.8954
- ソケット精度: 0.0
- 壁精度: 0.9644
- 窓精度: nan
- ヒーター精度: nan
- 床精度: 0.6710
- 天井精度: 0.0
- 幅木精度: nan
- ドア精度: 0.6525
- 照明精度: nan
- 未ラベルIoU: nan
- 定規IoU: 0.7222
- ソケットIoU: 0.0
- 壁IoU: 0.9553
- 窓IoU: 0.0
- ヒーターIoU: nan
- 床IoU: 0.2630
- 天井IoU: 0.0
- 幅木IoU: 0.0
- ドアIoU: 0.6342
- 照明IoU: nan
📚 ドキュメント
モデルの説明
このモデルは、画像セグメンテーションタスクに特化した、事前学習済みモデルをファインチューニングしたものです。
想定される用途と制限
このモデルは、建設現場の画像セグメンテーションに使用することを想定しています。ただし、特定の環境や条件下では性能が低下する可能性があります。
学習と評価データ
このモデルは、yiming19/construction_place データセットを使用して学習され、評価されました。
学習手順
学習ハイパーパラメータ
学習中に以下のハイパーパラメータが使用されました。
パラメータ | 値 |
---|---|
学習率 | 6e-05 |
学習バッチサイズ | 2 |
評価バッチサイズ | 2 |
シード | 42 |
オプティマイザ | Adam (betas=(0.9,0.999), epsilon=1e-08) |
学習率スケジューラのタイプ | 線形 |
エポック数 | 50 |
学習結果
学習損失 | エポック | ステップ | 検証損失 | 平均IoU | 平均精度 | 全体精度 | 未ラベル精度 | 定規精度 | ソケット精度 | 壁精度 | 窓精度 | ヒーター精度 | 床精度 | 天井精度 | 幅木精度 | ドア精度 | 照明精度 | 未ラベルIoU | 定規IoU | ソケットIoU | 壁IoU | 窓IoU | ヒーターIoU | 床IoU | 天井IoU | 幅木IoU | ドアIoU | 照明IoU |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.8126 | 1.43 | 20 | 2.1233 | 0.1955 | 0.5160 | 0.8448 | nan | 0.8191 | 0.0 | 0.8868 | nan | nan | 0.9618 | 0.0 | nan | 0.4281 | nan | 0.0 | 0.5555 | 0.0 | 0.8845 | 0.0 | 0.0 | 0.2971 | 0.0 | 0.0 | 0.4135 | 0.0 |
1.905 | 2.86 | 40 | 1.3611 | 0.1827 | 0.4921 | 0.8505 | nan | 0.9275 | 0.0 | 0.9139 | nan | nan | 0.9627 | 0.0 | nan | 0.1484 | nan | nan | 0.5404 | 0.0 | 0.9095 | 0.0 | 0.0 | 0.2289 | 0.0 | 0.0 | 0.1484 | 0.0 |
1.1072 | 4.29 | 60 | 1.0502 | 0.2327 | 0.5517 | 0.8903 | nan | 0.9108 | 0.0 | 0.9266 | nan | nan | 0.9367 | 0.0 | nan | 0.5360 | nan | nan | 0.5301 | 0.0 | 0.9206 | 0.0 | 0.0 | 0.3475 | 0.0 | 0.0 | 0.5284 | 0.0 |
1.0076 | 5.71 | 80 | 0.8802 | 0.2744 | 0.5609 | 0.9089 | nan | 0.8208 | 0.0 | 0.9410 | nan | nan | 0.9532 | 0.0 | nan | 0.6505 | nan | nan | 0.5500 | 0.0 | 0.9277 | 0.0 | 0.0 | 0.3688 | 0.0 | 0.0 | 0.6227 | nan |
1.5533 | 7.14 | 100 | 0.8991 | 0.2846 | 0.5514 | 0.8878 | nan | 0.8918 | 0.0 | 0.9243 | nan | nan | 0.9591 | 0.0 | nan | 0.5332 | nan | nan | 0.5262 | 0.0 | 0.9169 | 0.0 | nan | 0.3209 | 0.0 | 0.0 | 0.5132 | nan |
0.9912 | 8.57 | 120 | 0.9340 | 0.2891 | 0.5652 | 0.8854 | nan | 0.9478 | 0.0 | 0.9151 | nan | nan | 0.9438 | 0.0 | nan | 0.5844 | nan | nan | 0.5059 | 0.0 | 0.9098 | 0.0 | nan | 0.3424 | 0.0 | 0.0 | 0.5544 | nan |
0.784 | 10.0 | 140 | 0.7017 | 0.3140 | 0.5984 | 0.9173 | nan | 0.9136 | 0.0 | 0.9305 | nan | nan | 0.8971 | 0.0 | nan | 0.8493 | nan | nan | 0.5324 | 0.0 | 0.9224 | 0.0 | 0.0 | 0.5805 | 0.0 | 0.0 | 0.7909 | nan |
0.5636 | 11.43 | 160 | 0.6925 | 0.3573 | 0.5978 | 0.9280 | nan | 0.8714 | 0.0 | 0.9412 | nan | nan | 0.8868 | 0.0 | nan | 0.8876 | nan | nan | 0.5701 | 0.0 | 0.9308 | 0.0 | nan | 0.5638 | 0.0 | 0.0 | 0.7935 | nan |
1.0692 | 12.86 | 180 | 0.7313 | 0.2931 | 0.5724 | 0.8981 | nan | 0.9587 | 0.0 | 0.9231 | nan | nan | 0.8880 | 0.0 | nan | 0.6647 | nan | nan | 0.4988 | 0.0 | 0.9182 | 0.0 | nan | 0.3342 | 0.0 | 0.0 | 0.5932 | nan |
0.7603 | 14.29 | 200 | 0.6907 | 0.2577 | 0.5744 | 0.9001 | nan | 0.9619 | 0.0 | 0.9251 | nan | nan | 0.8930 | 0.0 | nan | 0.6661 | nan | nan | 0.4939 | 0.0 | 0.9208 | 0.0 | 0.0 | 0.3219 | 0.0 | 0.0 | 0.5824 | nan |
0.9509 | 15.71 | 220 | 0.5110 | 0.3682 | 0.6069 | 0.9324 | nan | 0.9355 | 0.0 | 0.9417 | nan | nan | 0.8453 | 0.0 | nan | 0.9191 | nan | nan | 0.5671 | 0.0 | 0.9334 | 0.0 | nan | 0.6050 | 0.0 | 0.0 | 0.8403 | nan |
0.4254 | 17.14 | 240 | 0.5925 | 0.2961 | 0.5629 | 0.9023 | nan | 0.9646 | 0.0 | 0.9295 | nan | nan | 0.8261 | 0.0 | nan | 0.6569 | nan | nan | 0.5302 | 0.0 | 0.9243 | 0.0 | nan | 0.3138 | 0.0 | 0.0 | 0.6009 | nan |
0.3839 | 18.57 | 260 | 0.4226 | 0.3537 | 0.5479 | 0.9367 | nan | 0.9108 | 0.0 | 0.9540 | nan | nan | 0.5102 | 0.0 | nan | 0.9124 | nan | nan | 0.6643 | 0.0 | 0.9426 | 0.0 | nan | 0.3868 | 0.0 | 0.0 | 0.8361 | nan |
0.7441 | 20.0 | 280 | 0.5084 | 0.3533 | 0.5993 | 0.9277 | nan | 0.9691 | 0.0 | 0.9391 | nan | nan | 0.8075 | 0.0 | nan | 0.8801 | nan | nan | 0.5527 | 0.0 | 0.9333 | 0.0 | nan | 0.5197 | 0.0 | 0.0 | 0.8208 | nan |
0.4374 | 21.43 | 300 | 0.4683 | 0.3038 | 0.5549 | 0.9173 | nan | 0.9662 | 0.0 | 0.9480 | nan | nan | 0.7594 | 0.0 | nan | 0.6558 | nan | nan | 0.6024 | 0.0 | 0.9419 | 0.0 | nan | 0.2804 | 0.0 | 0.0 | 0.6056 | nan |
0.6224 | 22.86 | 320 | 0.4100 | 0.3810 | 0.5960 | 0.9374 | nan | 0.9704 | 0.0 | 0.9460 | nan | nan | 0.7131 | 0.0 | nan | 0.9467 | nan | nan | 0.5986 | 0.0 | 0.9401 | 0.0 | nan | 0.6197 | 0.0 | 0.0 | 0.8898 | nan |
0.4473 | 24.29 | 340 | 0.3933 | 0.3368 | 0.5431 | 0.9336 | nan | 0.9212 | 0.0 | 0.9620 | nan | nan | 0.6197 | 0.0 | nan | 0.7556 | nan | nan | 0.7221 | 0.0 | 0.9521 | 0.0 | nan | 0.2958 | 0.0 | 0.0 | 0.7245 | nan |
0.3364 | 25.71 | 360 | 0.4336 | 0.2976 | 0.5125 | 0.9134 | nan | 0.9408 | 0.0 | 0.9544 | nan | nan | 0.6075 | 0.0 | nan | 0.5721 | nan | nan | 0.6918 | 0.0 | 0.9481 | 0.0 | nan | 0.1998 | 0.0 | 0.0 | 0.5411 | nan |
0.281 | 27.14 | 380 | 0.3795 | 0.3689 | 0.5760 | 0.9420 | nan | 0.9250 | 0.0 | 0.9589 | nan | nan | 0.6859 | 0.0 | nan | 0.8863 | nan | nan | 0.7108 | 0.0 | 0.9518 | 0.0 | nan | 0.4576 | 0.0 | 0.0 | 0.8305 | nan |
0.3198 | 28.57 | 400 | 0.4023 | 0.3158 | 0.5143 | 0.9238 | nan | 0.9120 | 0.0 | 0.9610 | nan | nan | 0.5580 | 0.0 | nan | 0.6550 | nan | nan | 0.7210 | 0.0 | 0.9519 | 0.0 | nan | 0.2238 | 0.0 | 0.0 | 0.6293 | nan |
0.4624 | 30.0 | 420 | 0.3565 | 0.3770 | 0.5774 | 0.9475 | nan | 0.9408 | 0.0 | 0.9613 | nan | nan | 0.6287 | 0.0 | nan | 0.9337 | nan | nan | 0.6855 | 0.0 | 0.9539 | 0.0 | nan | 0.4943 | 0.0 | 0.0 | 0.8827 | nan |
0.2356 | 31.43 | 440 | 0.3940 | 0.3100 | 0.5349 | 0.9221 | nan | 0.9268 | 0.0 | 0.9602 | nan | nan | 0.7187 | 0.0 | nan | 0.6040 | nan | nan | 0.7005 | 0.0 | 0.9536 | 0.0 | nan | 0.2474 | 0.0 | 0.0 | 0.5781 | nan |
0.3931 | 32.86 | 460 | 0.3516 | 0.3162 | 0.5570 | 0.9258 | nan | 0.9338 | 0.0 | 0.9598 | nan | nan | 0.8124 | 0.0 | nan | 0.6362 | nan | nan | 0.6824 | 0.0 | 0.9542 | 0.0 | nan | 0.2888 | 0.0 | 0.0 | 0.6040 | nan |
0.2431 | 34.29 | 480 | 0.4011 | 0.2955 | 0.5291 | 0.9138 | nan | 0.9242 | 0.0 | 0.9583 | nan | nan | 0.7864 | 0.0 | nan | 0.5058 | nan | nan | 0.6954 | 0.0 | 0.9520 | 0.0 | nan | 0.2331 | 0.0 | 0.0 | 0.4832 | nan |
0.2131 | 35.71 | 500 | 0.2847 | 0.3764 | 0.5613 | 0.9487 | nan | 0.8877 | 0.0 | 0.9679 | nan | nan | 0.6103 | 0.0 | nan | 0.9020 | nan | nan | 0.7330 | 0.0 | 0.9571 | 0.0 | nan | 0.4539 | 0.0 | 0.0 | 0.8669 | nan |
0.4151 | 37.14 | 520 | 0.3176 | 0.3186 | 0.5239 | 0.9256 | nan | 0.8930 | 0.0 | 0.9640 | nan | nan | 0.6505 | 0.0 | nan | 0.6356 | nan | nan | 0.7251 | 0.0 | 0.9544 | 0.0 | nan | 0.2507 | 0.0 | 0.0 | 0.6187 | nan |
0.2408 | 38.57 | 540 | 0.3267 | 0.3071 | 0.5361 | 0.9208 | nan | 0.9264 | 0.0 | 0.9600 | nan | nan | 0.7441 | 0.0 | nan | 0.5859 | nan | nan | 0.6868 | 0.0 | 0.9538 | 0.0 | nan | 0.2526 | 0.0 | 0.0 | 0.5635 | nan |
0.2274 | 40.0 | 560 | 0.2875 | 0.3396 | 0.5471 | 0.9349 | nan | 0.9098 | 0.0 | 0.9626 | nan | nan | 0.6456 | 0.0 | nan | 0.7649 | nan | nan | 0.7018 | 0.0 | 0.9547 | 0.0 | nan | 0.3216 | 0.0 | 0.0 | 0.7387 | nan |
0.2452 | 41.43 | 580 | 0.2998 | 0.3181 | 0.5357 | 0.9279 | nan | 0.9089 | 0.0 | 0.9642 | nan | nan | 0.6932 | 0.0 | nan | 0.6480 | nan | nan | 0.6868 | 0.0 | 0.9538 | 0.0 | nan | 0.2526 | 0.0 | 0.0 | 0.5635 | nan |
📄 ライセンス
このモデルは、Otherライセンスの下で提供されています。
Clipseg Rd64 Refined
Apache-2.0
CLIPSegはテキストと画像プロンプトに基づく画像セグメンテーションモデルで、ゼロショットおよびワンショット画像セグメンテーションタスクをサポートします。
画像セグメンテーション
Transformers

C
CIDAS
10.0M
122
RMBG 1.4
その他
BRIA RMBG v1.4 は、効率的に様々な画像の前景と背景を分離するために設計された先進的な背景除去モデルで、非商用利用に適しています。
画像セグメンテーション
Transformers

R
briaai
874.12k
1,771
RMBG 2.0
その他
BRIA AIが開発した最新の背景除去モデルで、様々な画像の前景と背景を効果的に分離でき、大規模な商業コンテンツ制作シーンに適しています。
画像セグメンテーション
Transformers

R
briaai
703.33k
741
Segformer B2 Clothes
MIT
ATRデータセットでファインチューニングされたSegFormerモデル、服装と人体セグメンテーション用
画像セグメンテーション
Transformers

S
mattmdjaga
666.39k
410
Sam Vit Base
Apache-2.0
SAMは、点やボックスなどの入力プロンプトから高品質なオブジェクトマスクを生成できる視覚モデルで、ゼロショットセグメンテーションタスクをサポートします
画像セグメンテーション
Transformers その他

S
facebook
635.09k
137
Birefnet
MIT
BiRefNetは高解像度二分画像分割のための深層学習モデルで、バイラテラル参照ネットワークにより精密な画像分割を実現します。
画像セグメンテーション
Transformers

B
ZhengPeng7
626.54k
365
Segformer B1 Finetuned Ade 512 512
その他
SegFormerはTransformerベースのセマンティックセグメンテーションモデルで、ADE20Kデータセットでファインチューニングされており、画像分割タスクに適しています。
画像セグメンテーション
Transformers

S
nvidia
560.79k
6
Sam Vit Large
Apache-2.0
SAMは入力プロンプト点やバウンディングボックスから高品質な物体マスクを生成できる視覚モデルで、ゼロショット転移能力を備えています。
画像セグメンテーション
Transformers その他

S
facebook
455.43k
28
Face Parsing
nvidia/mit-b5をファインチューニングしたセマンティックセグメンテーションモデルで、顔解析タスク用
画像セグメンテーション
Transformers 英語

F
jonathandinu
398.59k
157
Sam Vit Huge
Apache-2.0
SAMは入力プロンプトに基づいて高品質なオブジェクトマスクを生成できるビジュアルモデルで、新しいタスクへのゼロショット転移をサポートします
画像セグメンテーション
Transformers その他

S
facebook
324.78k
163
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98