🚀 IELTSエッセイ自動採点モデル
このプロジェクトでは、膨大なヒューマンレーターによる訓練データセットを使用して、IELTS(国際英語能力試験)エッセイを自動採点する言語モデルを訓練しました。
訓練データセットは、18,000の実際のIELTS試験エッセイとその公式の点数で構成されています。当社のモデルの採点結果は、IELTSの公式基準に基づいて、タスク達成度、結束性と連貫性、語彙、文法、全体の5つの次元で測定されます。全体は、IELTSエッセイの総合得点です。
テストデータセットでの印象的な結果は以下の通りです:Accuracy = 0.82、F1 Score = 0.81。現時点の結果では、当社のモデルはある程度までIELTSエッセイのヒューマンレーターを大まかに代替できますが、精度と有効性を向上させるために引き続き最適化していきます。
このモデルを使用する場合は、この論文を引用してください。
@article{sun2024automatic,
title={Automatic Essay Multi-dimensional Scoring with Fine-tuning and Multiple Regression},
author={Kun Sun and Rong Wang},
year={2024},
journal={ArXiv},
url={https://arxiv.org/abs/2406.01198}
}
🚀 クイックスタート
以下は、新しいIELTSエッセイを採点するためのモデルを実装するコードです。以下の例では、テストデータセットから全体得点8.0のエッセイを取り上げています。当社のモデルはこのエッセイを8.5と採点しており、ヒューマンレーターによる採点と非常に近い結果となっています。
💻 使用例
基本的な使用法
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
import numpy as np
model_path = "KevSun/IELTS_essay_scoring"
model = AutoModelForSequenceClassification.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
new_text = (
"It is important for all towns and cities to have large public spaces such as squares and parks. "
"Do you agree or disagree with this statement? It is crucial for all metropolitan cities and towns to "
"have some recreational facilities like parks and squares because of their numerous benefits. A number of "
"arguments surround my opinion, and I will discuss it in upcoming paragraphs. To commence with, the first "
"and the foremost merit is that it is beneficial for the health of people because in morning time they can "
"go for walking as well as in the evenings, also older people can spend their free time with their loved ones, "
"and they can discuss about their daily happenings. In addition, young people do lot of exercise in parks and "
"gardens to keep their health fit and healthy, otherwise if there is no park they glue with electronic gadgets "
"like mobile phones and computers and many more. Furthermore, little children get best place to play, they play "
"with their friends in parks if any garden or square is not available for kids then they use roads and streets "
"for playing it can lead to serious incidents. Moreover, parks have some educational value too, in schools, "
"students learn about environment protection in their studies and teachers can take their pupils to parks because "
"students can see those pictures so lively which they see in their school books and they know about importance "
"and protection of trees and flowers. In recapitulate, parks holds immense importance regarding education, health "
"for people of every society, so government should build parks in every city and town."
)
encoded_input = tokenizer(new_text, return_tensors='pt', padding=True, truncation=True, max_length=512)
model.eval()
with torch.no_grad():
outputs = model(**encoded_input)
predictions = outputs.logits.squeeze()
predicted_scores = predictions.numpy()
normalized_scores = (predicted_scores / predicted_scores.max()) * 9
rounded_scores = np.round(normalized_scores * 2) / 2
item_names = ["Task Achievement", "Coherence and Cohesion", "Vocabulary", "Grammar", "Overall"]
for item, score in zip(item_names, rounded_scores):
print(f"{item}: {score:.1f}")
📄 ライセンス
このプロジェクトはMITライセンスの下で公開されています。