Gpt2 Chinese Cluecorpussmall
中国語GPT2-distilモデル、CLUECorpusSmallデータセットで事前学習済み、中国語テキスト生成タスクに適しています
ダウンロード数 41.45k
リリース時間 : 3/2/2022
モデル概要
このモデルはGPT2の軽量版で、中国語テキスト生成タスクに特化して最適化されており、一貫性のある中国語テキストを生成できます
モデル特徴
軽量設計
6層Transformer構造を採用し、標準GPT2モデルより軽量でリソースが限られた環境に適しています
中国語最適化
中国語テキストに特化して事前学習されており、中国語生成タスクで良好な性能を発揮します
長文サポート
1024長のシーケンス入力をサポートし、長いテキスト生成に適しています
モデル能力
中国語テキスト生成
テキスト継続
対話生成
使用事例
コンテンツ作成
記事継続
与えられた冒頭段落に基づいて一貫性のある記事内容を生成します
文脈に合った中国語テキストを生成
対話システム
チャットボットの返答生成モジュール構築に使用
自然で流暢な対話返答を生成
教育応用
執筆支援
学生の創造的執筆練習を支援
執筆のインスピレーションと内容提案を提供
🚀 中国語GPT2モデル
この一連のGPT2モデルは、中国語テキストの生成に使用されます。GPT2-xlargeモデルを除く他のモデルは、UER-pyによって事前学習されており、この論文で紹介されています。GPT2-xlargeモデルは、TencentPretrainによって事前学習されており、この論文で紹介されています。TencentPretrainはUER-pyを継承し、10億を超えるパラメータを持つモデルをサポートし、マルチモーダル事前学習フレームワークに拡張されています。また、他のモデルもTencentPretrainで事前学習することができます。
モデルはUER-py Modelzooページから、または以下のHuggingFaceのリンクからダウンロードできます。
リンク | |
---|---|
GPT2-distil | L=6/H=768 |
GPT2 | L=12/H=768 |
GPT2-medium | L=24/H=1024 |
GPT2-large | L=36/H=1280 |
GPT2-xlarge | L=48/H=1600 |
なお、6層のモデルはdistilgpt2の設定に従っているため、GPT2-distilモデルと呼ばれ、事前学習には大規模モデルの監督は含まれていません。
🚀 クイックスタート
モデルの使用方法
テキスト生成パイプラインを使用して、モデルを直接使用することができます(GPT2-distilの場合を例に)。
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-distil-chinese-cluecorpussmall")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-distil-chinese-cluecorpussmall")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("这是很久之前的事情了", max_length=100, do_sample=True)
[{'generated_text': '这是很久之前的事情了 。 我 现 在 想 起 来 就 让 自 己 很 伤 心 , 很 失 望 。 我 现 在 想 到 , 我 觉 得 大 多 数 人 的 生 活 比 我 的 生 命 还 要 重 要 , 对 一 些 事 情 的 看 法 , 对 一 些 人 的 看 法 , 都 是 在 发 泄 。 但 是 , 我 们 的 生 活 是 需 要 一 个 信 用 体 系 的 。 我 不 知'}]
✨ 主な機能
- 中国語テキストの生成が可能です。
- 複数のモデルサイズ(GPT2-distil、GPT2、GPT2-medium、GPT2-large、GPT2-xlarge)が用意されています。
📦 インストール
このモデルは、HuggingFaceのライブラリを使用して簡単にインストールできます。また、事前学習済みモデルは上記のリンクからダウンロードできます。
📚 ドキュメント
学習データ
学習データにはCLUECorpusSmallが使用されています。
学習手順
GPT2-xlarge以外のモデル(UER-pyを使用)
- シーケンス長128で1,000,000ステップの事前学習
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpussmall_lm_seq128_dataset.pt \
--seq_length 128 --processes_num 32 --data_processor lm
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq128_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--config_path models/gpt2/distil_config.json \
--output_model_path models/cluecorpussmall_gpt2_distil_seq128_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
--learning_rate 1e-4 --batch_size 64
- シーケンス長1024で250,000ステップの事前学習
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
--seq_length 1024 --processes_num 32 --data_processor lm
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--pretrained_model_path models/cluecorpussmall_gpt2_distil_seq128_model.bin-1000000 \
--config_path models/gpt2/distil_config.json \
--output_model_path models/cluecorpussmall_gpt2_distil_seq1024_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
--learning_rate 5e-5 --batch_size 16
- 事前学習済みモデルをHuggingfaceの形式に変換
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_gpt2_distil_seq1024_model.bin-250000 \
--output_model_path pytorch_model.bin \
--layers_num 6
GPT2-xlargeモデル(TencentPretrainを使用)
- シーケンス長128で1,000,000ステップの事前学習
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpussmall_lm_seq128_dataset.pt \
--seq_length 128 --processes_num 32 --data_processor lm
deepspeed pretrain.py --deepspeed --deepspeed_config models/deepspeed_config.json \
--dataset_path corpora/cluecorpussmall_lm_seq128_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--config_path models/gpt2/xlarge_config.json \
--output_model_path models/cluecorpussmall_gpt2_xlarge_seq128_model \
--world_size 8 --batch_size 64 \
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
--deepspeed_checkpoint_activations --deepspeed_checkpoint_layers_num 24
- DeepSpeedチェックポイントからfp32の統合重みを抽出
python3 models/cluecorpussmall_gpt2_xlarge_seq128_model/zero_to_fp32.py models/cluecorpussmall_gpt2_xlarge_seq128_model/ \
models/cluecorpussmall_gpt2_xlarge_seq128_model.bin
- シーケンス長1024で250,000ステップの事前学習
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
--seq_length 1024 --processes_num 32 --data_processor lm
deepspeed pretrain.py --deepspeed --deepspeed_config models/deepspeed_config.json \
--dataset_path corpora/cluecorpussmall_lm_seq1024_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--config_path models/gpt2/xlarge_config.json \
--pretrained_model_path models/cluecorpussmall_gpt2_xlarge_seq128_model.bin \
--output_model_path models/cluecorpussmall_gpt2_xlarge_seq1024_model \
--world_size 8 --batch_size 16 --learning_rate 5e-5 \
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
--deepspeed_checkpoint_activations --deepspeed_checkpoint_layers_num 6
- DeepSpeedチェックポイントからfp32の統合重みを抽出
python3 models/cluecorpussmall_gpt2_xlarge_seq1024_model/zero_to_fp32.py models/cluecorpussmall_gpt2_xlarge_seq1024_model/ \
models/cluecorpussmall_gpt2_xlarge_seq1024_model.bin
- 事前学習済みモデルをHuggingfaceの形式に変換
python3 scripts/convert_gpt2_from_tencentpretrain_to_huggingface.py --input_model_path models/cluecorpussmall_gpt2_xlarge_seq1024_model.bin \
--output_model_path pytorch_model.bin \
--layers_num 48
BibTeXエントリと引用情報
@article{radford2019language,
title={Language Models are Unsupervised Multitask Learners},
author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
year={2019}
}
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
@article{zhao2023tencentpretrain,
title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
journal={ACL 2023},
pages={217},
year={2023}
Phi 2 GGUF
その他
Phi-2はマイクロソフトが開発した小型ながら強力な言語モデルで、27億のパラメータを持ち、効率的な推論と高品質なテキスト生成に特化しています。
大規模言語モデル 複数言語対応
P
TheBloke
41.5M
205
Roberta Large
MIT
マスク言語モデリングの目標で事前学習された大型英語言語モデルで、改良されたBERTの学習方法を採用しています。
大規模言語モデル 英語
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERTはBERT基礎モデルの蒸留バージョンで、同等の性能を維持しながら、より軽量で高効率です。シーケンス分類、タグ分類などの自然言語処理タスクに適しています。
大規模言語モデル 英語
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instructは多言語大規模言語モデルで、多言語対話ユースケースに最適化されており、一般的な業界ベンチマークで優れた性能を発揮します。
大規模言語モデル 英語
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM - RoBERTaは、100言語の2.5TBのフィルタリングされたCommonCrawlデータを使って事前学習された多言語モデルで、マスク言語モデリングの目標で学習されています。
大規模言語モデル 複数言語対応
X
FacebookAI
9.6M
664
Roberta Base
MIT
Transformerアーキテクチャに基づく英語の事前学習モデルで、マスク言語モデリングの目標を通じて大量のテキストでトレーニングされ、テキスト特徴抽出と下流タスクの微調整をサポートします。
大規模言語モデル 英語
R
FacebookAI
9.3M
488
Opt 125m
その他
OPTはMeta AIが公開したオープンプリトレーニングトランスフォーマー言語モデルスイートで、パラメータ数は1.25億から1750億まであり、GPT-3シリーズの性能に対抗することを目指しつつ、大規模言語モデルのオープンな研究を促進するものです。
大規模言語モデル 英語
O
facebook
6.3M
198
1
transformersライブラリに基づく事前学習モデルで、様々なNLPタスクに適用可能
大規模言語モデル
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1はMetaが発表した多言語大規模言語モデルシリーズで、8B、70B、405Bのパラメータ規模を持ち、8種類の言語とコード生成をサポートし、多言語対話シーンを最適化しています。
大規模言語モデル
Transformers 複数言語対応

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5ベーシック版はGoogleによって開発されたテキスト-to-テキスト変換Transformerモデルで、パラメータ規模は2.2億で、多言語NLPタスクをサポートしています。
大規模言語モデル 複数言語対応
T
google-t5
5.4M
702
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98