EVA Qwen2.5 32B V0.2
ロールプレイング/ストーリーライティングに特化した専門モデルで、Qwen2.5-32Bをベースにフルパラメータ微調整を行い、合成データと自然データを融合しています。
ダウンロード数 625
リリース時間 : 11/5/2024
モデル概要
Qwen2.5-32B大規模言語モデルをベースにフルパラメータ微調整を実施し、ロールプレイングやストーリーライティングタスクに特化。複数の高品質データセットを統合することで創造性と表現力を向上させています。
モデル特徴
高品質データ統合
Celeste 70Bデータ混合スキーム及び複数の高品質ライティングデータセットを統合し、モデルのパフォーマンスを大幅に向上
ロールプレイング最適化
ロールプレイングシナリオに特化して最適化され、複雑なキャラクターインタラクションや状況構築をサポート
創作スタイルの多様性
様々なライティングスタイルのデータセットを融合することで、多様な創作ニーズに対応可能
データ汚染修正
v0.2バージョンでは以前のバージョンのデータ汚染問題を修正し、生成品質がより安定
モデル能力
ロールプレイング対話生成
クリエイティブストーリーライティング
ライティングプロンプト応答
マルチターン対話維持
スタイリッシュなテキスト生成
使用事例
クリエイティブライティング
ストーリー創作支援
ユーザーが提供したプロンプトに基づき、一貫性のあるストーリーパラグラフを生成
プロット展開とキャラクター造形を備えた完全なストーリーを生成可能
ライティングインスピレーション喚起
シンプルなプロンプトから多様なクリエイティブライティングの方向性を展開
多様なライティングアイデアとプロット展開の可能性を提供
インタラクティブエンターテインメント
ロールプレイングゲーム
ゲーム内のNPCとしてインテリジェントな対話インタラクションを実現
キャラクターの一貫性を維持しつつ深みのある対話が可能
バーチャルキャラクター作成
キャラクターカードに基づき設定に沿った対話と行動を生成
キャラクター特性を正確に把握し、設定に合致したレスポンスを生成
library_name: transformers license: apache-2.0 datasets:
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- Nopm/Opus_WritingStruct
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
- Gryphe/Sonnet3.5-Charcard-Roleplay
- Gryphe/ChatGPT-4o-Writing-Prompts
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
- nothingiisreal/Reddit-Dirty-And-WritingPrompts
- allura-org/Celeste-1.x-data-mixture
- cognitivecomputations/dolphin-2.9.3 base_model: Qwen/Qwen2.5-32B tags:
- generated_from_trainer model-index:
- name: EVA-Qwen2.5-32B-SFFT-v0.1 results: []
EVA Qwen2.5-32B v0.2
A RP/storywriting specialist model, full-parameter finetune of Qwen2.5-32B on mixture of synthetic and natural data.
It uses Celeste 70B 0.1 data mixture, greatly expanding it to improve versatility, creativity and "flavor" of the resulting model.
Dedicated to Nev.
Version notes for 0.2: Basically, reprocessed the whole dataset again, due to a severe mistake in previously used pipeline, which left the data poisoned with a lot of non-unicode characters. Now, no more weird generation artifacts, and more stability. Major kudos to Cahvay for his work on fixing this critical issue.
Prompt format is ChatML.
Recommended sampler values:
- Temperature: 1
- Min-P: 0.05
- Top-A: 0.2
- Repetition Penalty: 1.03
Recommended SillyTavern presets (via CalamitousFelicitousness):
Training data:
- Celeste 70B 0.1 data mixture minus Opus Instruct subset. See that model's card for details.
- Kalomaze's Opus_Instruct_25k dataset, filtered for refusals.
- A subset (1k rows) of ChatGPT-4o-WritingPrompts by Gryphe
- A subset (2k rows) of Sonnet3.5-Charcards-Roleplay by Gryphe
- Synthstruct and SynthRP datasets by Epiculous
- A subset from Dolphin-2.9.3, including filtered version of not_samantha and a small subset of systemchat.
Training time and hardware:
- 7 hours on 8xH100 SXM, provided by FeatherlessAI
Model was created by Kearm, Auri and Cahvay.
Special thanks:
- to Cahvay for his work on investigating and reprocessing the corrupted dataset, removing the single biggest source of data poisoning.
- to FeatherlessAI for generously providing 8xH100 SXM node for training of this model
- to Gryphe, Lemmy, Kalomaze, Nopm, Epiculous and CognitiveComputations for the data
- and to Allura-org for support, feedback, beta-testing and doing quality control of EVA models.
See axolotl config
axolotl version: 0.4.1
base_model: Qwen/Qwen2.5-32B
load_in_8bit: false
load_in_4bit: false
strict: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
# plugins:
# - axolotl.integrations.spectrum.SpectrumPlugin
# spectrum_top_fraction: 0.5
# # Optional if using a pre-scanned model as your base_model. Useful if using a model mirror
# spectrum_model_name: Qwen/Qwen2.5-32B
datasets:
- path: datasets/Celeste_Filtered_utf8fix.jsonl
type: sharegpt
- path: datasets/deduped_not_samantha_norefusals.jsonl
type: sharegpt
- path: datasets/deduped_SynthRP-Gens_processed_ShareGPT_converted_cleaned.jsonl
type: sharegpt
- path: datasets/deduped_Synthstruct-Gens_processed_sharegpt_converted_cleaned.jsonl
type: sharegpt
- path: datasets/Gryphe-4o-WP-filtered-sharegpt_utf8fix.jsonl
type: sharegpt
- path: datasets/opus-instruct-22k-no_refusals-filtered_utf8fix.jsonl
type: sharegpt
- path: datasets/Sonnet3-5-charcard-names-filtered-sharegpt_utf8fix.jsonl
type: sharegpt
- path: datasets/SystemChat_subset_filtered_sharegpt_utf8fix.jsonl
type: sharegpt
chat_template: chatml
shuffle_merged_datasets: true
val_set_size: 0.001
output_dir: ./EVA-Qwen2.5-32B-SFFT-v0.1
sequence_len: 10240
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
# adapter: qlora
# lora_model_dir:
# lora_r: 64
# lora_alpha: 128
# lora_dropout: 0.05
# lora_target_linear: true
# peft_use_dora: true
unfrozen_parameters:
- ^lm_head.weight$
- ^model.embed_tokens.weight$
# mlp.down_proj layers
- model.layers.63.mlp.down_proj
- model.layers.49.mlp.down_proj
- model.layers.48.mlp.down_proj
- model.layers.45.mlp.down_proj
- model.layers.44.mlp.down_proj
- model.layers.47.mlp.down_proj
- model.layers.46.mlp.down_proj
- model.layers.43.mlp.down_proj
- model.layers.8.mlp.down_proj
- model.layers.11.mlp.down_proj
- model.layers.19.mlp.down_proj
- model.layers.35.mlp.down_proj
- model.layers.20.mlp.down_proj
- model.layers.52.mlp.down_proj
- model.layers.39.mlp.down_proj
- model.layers.62.mlp.down_proj
- model.layers.50.mlp.down_proj
- model.layers.29.mlp.down_proj
- model.layers.16.mlp.down_proj
- model.layers.28.mlp.down_proj
- model.layers.53.mlp.down_proj
- model.layers.30.mlp.down_proj
- model.layers.31.mlp.down_proj
- model.layers.32.mlp.down_proj
- model.layers.7.mlp.down_proj
- model.layers.36.mlp.down_proj
- model.layers.12.mlp.down_proj
- model.layers.18.mlp.down_proj
- model.layers.37.mlp.down_proj
- model.layers.38.mlp.down_proj
- model.layers.14.mlp.down_proj
- model.layers.13.mlp.down_proj
# mlp.gate_proj layers
- model.layers.43.mlp.gate_proj
- model.layers.61.mlp.gate_proj
- model.layers.60.mlp.gate_proj
- model.layers.44.mlp.gate_proj
- model.layers.62.mlp.gate_proj
- model.layers.28.mlp.gate_proj
- model.layers.29.mlp.gate_proj
- model.layers.45.mlp.gate_proj
- model.layers.37.mlp.gate_proj
- model.layers.35.mlp.gate_proj
- model.layers.59.mlp.gate_proj
- model.layers.36.mlp.gate_proj
- model.layers.30.mlp.gate_proj
- model.layers.48.mlp.gate_proj
- model.layers.38.mlp.gate_proj
- model.layers.27.mlp.gate_proj
- model.layers.31.mlp.gate_proj
- model.layers.34.mlp.gate_proj
- model.layers.58.mlp.gate_proj
- model.layers.33.mlp.gate_proj
- model.layers.39.mlp.gate_proj
- model.layers.26.mlp.gate_proj
- model.layers.32.mlp.gate_proj
- model.layers.46.mlp.gate_proj
- model.layers.42.mlp.gate_proj
- model.layers.49.mlp.gate_proj
- model.layers.57.mlp.gate_proj
- model.layers.50.mlp.gate_proj
- model.layers.47.mlp.gate_proj
- model.layers.56.mlp.gate_proj
- model.layers.63.mlp.gate_proj
- model.layers.55.mlp.gate_proj
# mlp.up_proj layers
- model.layers.61.mlp.up_proj
- model.layers.60.mlp.up_proj
- model.layers.32.mlp.up_proj
- model.layers.59.mlp.up_proj
- model.layers.58.mlp.up_proj
- model.layers.57.mlp.up_proj
- model.layers.44.mlp.up_proj
- model.layers.28.mlp.up_proj
- model.layers.35.mlp.up_proj
- model.layers.36.mlp.up_proj
- model.layers.29.mlp.up_proj
- model.layers.31.mlp.up_proj
- model.layers.34.mlp.up_proj
- model.layers.55.mlp.up_proj
- model.layers.49.mlp.up_proj
- model.layers.30.mlp.up_proj
- model.layers.53.mlp.up_proj
- model.layers.43.mlp.up_proj
- model.layers.56.mlp.up_proj
- model.layers.33.mlp.up_proj
- model.layers.54.mlp.up_proj
- model.layers.62.mlp.up_proj
- model.layers.27.mlp.up_proj
- model.layers.51.mlp.up_proj
- model.layers.52.mlp.up_proj
- model.layers.37.mlp.up_proj
- model.layers.45.mlp.up_proj
- model.layers.26.mlp.up_proj
- model.layers.42.mlp.up_proj
- model.layers.50.mlp.up_proj
- model.layers.48.mlp.up_proj
- model.layers.39.mlp.up_proj
# self_attn.k_proj layers
- model.layers.63.self_attn.k_proj
- model.layers.55.self_attn.k_proj
- model.layers.60.self_attn.k_proj
- model.layers.7.self_attn.k_proj
- model.layers.12.self_attn.k_proj
- model.layers.13.self_attn.k_proj
- model.layers.57.self_attn.k_proj
- model.layers.29.self_attn.k_proj
- model.layers.14.self_attn.k_proj
- model.layers.51.self_attn.k_proj
- model.layers.53.self_attn.k_proj
- model.layers.54.self_attn.k_proj
- model.layers.22.self_attn.k_proj
- model.layers.61.self_attn.k_proj
- model.layers.18.self_attn.k_proj
- model.layers.30.self_attn.k_proj
- model.layers.9.self_attn.k_proj
- model.layers.24.self_attn.k_proj
- model.layers.23.self_attn.k_proj
- model.layers.25.self_attn.k_proj
- model.layers.10.self_attn.k_proj
- model.layers.58.self_attn.k_proj
- model.layers.56.self_attn.k_proj
- model.layers.15.self_attn.k_proj
- model.layers.32.self_attn.k_proj
- model.layers.28.self_attn.k_proj
- model.layers.8.self_attn.k_proj
- model.layers.59.self_attn.k_proj
- model.layers.11.self_attn.k_proj
- model.layers.48.self_attn.k_proj
- model.layers.16.self_attn.k_proj
- model.layers.50.self_attn.k_proj
# self_attn.o_proj layers
- model.layers.15.self_attn.o_proj
- model.layers.23.self_attn.o_proj
- model.layers.31.self_attn.o_proj
- model.layers.30.self_attn.o_proj
- model.layers.18.self_attn.o_proj
- model.layers.24.self_attn.o_proj
- model.layers.17.self_attn.o_proj
- model.layers.28.self_attn.o_proj
- model.layers.34.self_attn.o_proj
- model.layers.33.self_attn.o_proj
- model.layers.25.self_attn.o_proj
- model.layers.12.self_attn.o_proj
- model.layers.14.self_attn.o_proj
- model.layers.29.self_attn.o_proj
- model.layers.16.self_attn.o_proj
- model.layers.26.self_attn.o_proj
- model.layers.22.self_attn.o_proj
- model.layers.27.self_attn.o_proj
- model.layers.35.self_attn.o_proj
- model.layers.20.self_attn.o_proj
- model.layers.13.self_attn.o_proj
- model.layers.36.self_attn.o_proj
- model.layers.19.self_attn.o_proj
- model.layers.37.self_attn.o_proj
- model.layers.21.self_attn.o_proj
- model.layers.11.self_attn.o_proj
- model.layers.54.self_attn.o_proj
- model.layers.5.self_attn.o_proj
- model.layers.38.self_attn.o_proj
- model.layers.6.self_attn.o_proj
- model.layers.8.self_attn.o_proj
- model.layers.9.self_attn.o_proj
# self_attn.q_proj layers
- model.layers.1.self_attn.q_proj
- model.layers.2.self_attn.q_proj
- model.layers.3.self_attn.q_proj
- model.layers.45.self_attn.q_proj
- model.layers.54.self_attn.q_proj
- model.layers.35.self_attn.q_proj
- model.layers.48.self_attn.q_proj
- model.layers.61.self_attn.q_proj
- model.layers.52.self_attn.q_proj
- model.layers.50.self_attn.q_proj
- model.layers.60.self_attn.q_proj
- model.layers.56.self_attn.q_proj
- model.layers.58.self_attn.q_proj
- model.layers.42.self_attn.q_proj
- model.layers.59.self_attn.q_proj
- model.layers.44.self_attn.q_proj
- model.layers.55.self_attn.q_proj
- model.layers.57.self_attn.q_proj
- model.layers.41.self_attn.q_proj
- model.layers.36.self_attn.q_proj
- model.layers.39.self_attn.q_proj
- model.layers.4.self_attn.q_proj
- model.layers.43.self_attn.q_proj
- model.layers.34.self_attn.q_proj
- model.layers.46.self_attn.q_proj
- model.layers.49.self_attn.q_proj
- model.layers.40.self_attn.q_proj
- model.layers.25.self_attn.q_proj
- model.layers.51.self_attn.q_proj
- model.layers.17.self_attn.q_proj
- model.layers.37.self_attn.q_proj
- model.layers.53.self_attn.q_proj
# self_attn.v_proj layers
- model.layers.55.self_attn.v_proj
- model.layers.31.self_attn.v_proj
- model.layers.47.self_attn.v_proj
- model.layers.45.self_attn.v_proj
- model.layers.49.self_attn.v_proj
- model.layers.48.self_attn.v_proj
- model.layers.15.self_attn.v_proj
- model.layers.30.self_attn.v_proj
- model.layers.7.self_attn.v_proj
- model.layers.44.self_attn.v_proj
- model.layers.29.self_attn.v_proj
- model.layers.51.self_attn.v_proj
- model.layers.50.self_attn.v_proj
- model.layers.14.self_attn.v_proj
- model.layers.54.self_attn.v_proj
- model.layers.32.self_attn.v_proj
- model.layers.43.self_attn.v_proj
- model.layers.10.self_attn.v_proj
- model.layers.46.self_attn.v_proj
- model.layers.38.self_attn.v_proj
- model.layers.57.self_attn.v_proj
- model.layers.22.self_attn.v_proj
- model.layers.39.self_attn.v_proj
- model.layers.6.self_attn.v_proj
- model.layers.23.self_attn.v_proj
- model.layers.58.self_attn.v_proj
- model.layers.53.self_attn.v_proj
- model.layers.40.self_attn.v_proj
- model.layers.24.self_attn.v_proj
- model.layers.9.self_attn.v_proj
- model.layers.25.self_attn.v_proj
- model.layers.5.self_attn.v_proj
wandb_project: EVA-Qwen2.5-32B-SFFT-v0.2
wandb_entity:
wandb_watch:
wandb_name: Unit-02
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00005
max_grad_norm: 3
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: "unsloth"
# gradient_checkpointing_kwargs:
# use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 4
save_safetensors: true
hub_model_id:
hub_strategy:
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
# fsdp:
# - full_shard
# - auto_wrap
# fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_sync_module_states: false
# fsdp_offload_params: true
# fsdp_cpu_ram_efficient_loading: true
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
# fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
# fsdp_activation_checkpointing: true
# fsdp_state_dict_type: SHARDED_STATE_DICT # Changed from FULL_STATE_DICT
# fsdp_sharding_strategy: FULL_SHARD
# fsdp_forward_prefetch: false # Added
# fsdp_backward_prefetch: "BACKWARD_PRE" # Added
# fsdp_backward_prefetch_limit: 1 # Added
# fsdp_mixed_precision: BF16 # Added
Phi 2 GGUF
その他
Phi-2はマイクロソフトが開発した小型ながら強力な言語モデルで、27億のパラメータを持ち、効率的な推論と高品質なテキスト生成に特化しています。
大規模言語モデル 複数言語対応
P
TheBloke
41.5M
205
Roberta Large
MIT
マスク言語モデリングの目標で事前学習された大型英語言語モデルで、改良されたBERTの学習方法を採用しています。
大規模言語モデル 英語
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERTはBERT基礎モデルの蒸留バージョンで、同等の性能を維持しながら、より軽量で高効率です。シーケンス分類、タグ分類などの自然言語処理タスクに適しています。
大規模言語モデル 英語
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instructは多言語大規模言語モデルで、多言語対話ユースケースに最適化されており、一般的な業界ベンチマークで優れた性能を発揮します。
大規模言語モデル 英語
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM - RoBERTaは、100言語の2.5TBのフィルタリングされたCommonCrawlデータを使って事前学習された多言語モデルで、マスク言語モデリングの目標で学習されています。
大規模言語モデル 複数言語対応
X
FacebookAI
9.6M
664
Roberta Base
MIT
Transformerアーキテクチャに基づく英語の事前学習モデルで、マスク言語モデリングの目標を通じて大量のテキストでトレーニングされ、テキスト特徴抽出と下流タスクの微調整をサポートします。
大規模言語モデル 英語
R
FacebookAI
9.3M
488
Opt 125m
その他
OPTはMeta AIが公開したオープンプリトレーニングトランスフォーマー言語モデルスイートで、パラメータ数は1.25億から1750億まであり、GPT-3シリーズの性能に対抗することを目指しつつ、大規模言語モデルのオープンな研究を促進するものです。
大規模言語モデル 英語
O
facebook
6.3M
198
1
transformersライブラリに基づく事前学習モデルで、様々なNLPタスクに適用可能
大規模言語モデル
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1はMetaが発表した多言語大規模言語モデルシリーズで、8B、70B、405Bのパラメータ規模を持ち、8種類の言語とコード生成をサポートし、多言語対話シーンを最適化しています。
大規模言語モデル
Transformers 複数言語対応

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5ベーシック版はGoogleによって開発されたテキスト-to-テキスト変換Transformerモデルで、パラメータ規模は2.2億で、多言語NLPタスクをサポートしています。
大規模言語モデル 複数言語対応
T
google-t5
5.4M
702
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98