Jinyong Gpt2
J
Jinyong Gpt2
supermyによって開発
GPT-2をファインチューニングした金庸武侠小説スタイルのテキスト生成モデル
ダウンロード数 71
リリース時間 : 12/2/2022
モデル概要
このモデルは金庸スタイルの小説の続きを生成するために使用され、与えられた冒頭に基づいて自動的にテキストを継続し、金庸武侠小説の言語スタイルと物語の特徴を模倣します。
モデル特徴
金庸スタイル模倣
金庸武侠小説の特徴を持つテキストを生成でき、言語スタイル、人物の会話、プロット展開を含みます。
長文生成
最大108トークンの一貫性のあるテキストを生成することをサポートし、文脈の一貫性を保ちます。
ランダムサンプリング
ランダムサンプリング機能を有効にし、生成されるテキストをより多様で創造的にします。
モデル能力
武侠小説の続き書き
スタイル模倣
創造的執筆補助
使用事例
文学創作
武侠小説の続き書き
ユーザーが提供した金庸小説の断片に基づき、スタイルが一致する続きの内容を生成します
金庸スタイルに合致した一貫性のあるテキストを生成
創造的執筆補助
作家に武侠小説創作のインスピレーションと素材を提供します
多様なプロット展開と人物の会話提案
教育研究
文学スタイル研究
金庸文学スタイルの言語特徴を分析するために使用します
スタイル分析のための研究サンプルを生成
🚀 飞雪连天射白鹿,笑书神侠倚碧鸳
AIによる金庸小説の生成。文章の冒頭を与えると、続きを生成します。
🚀 クイックスタート
✨ 主な機能
AIにより金庸小説を生成し、文章の冒頭を与えると続きを生成します。
📦 インストール
このセクションではインストール手順に関する具体的な内容がありません。
💻 使用例
基本的な使用法
>>> # 調整後のモデルを呼び出す
>>> senc="这些雪花落下来,多么白,多么好看.过几天太阳出来,每一片 雪花都变得无影无踪.到得明年冬天,又有许很多多雪花,只不过已不是 今年这些雪花罢了。"
>>> model_id="jinyong-gpt2-finetuning"
>>> from transformers import AutoTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = AutoTokenizer.from_pretrained(model_id)
>>> model = GPT2LMHeadModel.from_pretrained(model_id)
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator.model.config.pad_token_id = text_generator.model.config.eos_token_id
>>> text_generator( senc,max_length=108, do_sample=True)
[{'generated_text': '这些雪花落下来,多么白,多么好看.过几天太阳出来,每一片 雪花都变得无影无踪.到得明年冬天,又有许很多多雪花,只不过已不是 今年这些雪花罢了。 反正 老天爷 有眼 , 不知 哪里 是甚么 风 险 ?” 正 说到此处 , 突然 听得 谢逊 啸声 渐近 , 忍不住 张口 惊呼 , 一齐 向他 扑去 , 只听 谢逊 一声 怒吼 , 跟着 左手 用力 拍 出一掌 , 以 掌力 化开 。 众人 吃了一惊 , 同时 从 海 道 中 跃出 , 双双 倒退 。 张翠山和殷素素 对望一眼 , 均想 以 这两 大高手 之力 如何 抵挡 , 以 今日 之力 如何 攻敌 之'}]
>>>
高度な使用法
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("supermy/jinyong-gpt2")
model = AutoModelForCausalLM.from_pretrained("supermy/jinyong-gpt2")
📚 ドキュメント
モデルの説明
このモデルはAIにより金庸小説を生成し、文章の冒頭を与えると続きを生成します。
トレーニングデータ
このデータセットは金庸の【飞雪连天射白鹿,笑书神侠倚碧鸳】小説集を基にトレーニングされています。
🔧 技術詳細
ベースモデル
トレーニング環境
NVIDIA 16G GPU
BPEトークナイザ
"vocab_size"=30000
トレーニングの統計情報は以下の通りです。
[INFO|trainer.py:1608] 2022-12-02 19:52:59,024 >> ***** Running training *****
[INFO|trainer.py:1609] 2022-12-02 19:52:59,024 >> Num examples = 9443
[INFO|trainer.py:1610] 2022-12-02 19:52:59,024 >> Num Epochs = 108
[INFO|trainer.py:1611] 2022-12-02 19:52:59,024 >> Instantaneous batch size per device = 12
[INFO|trainer.py:1612] 2022-12-02 19:52:59,024 >> Total train batch size (w. parallel, distributed & accumulation) = 12
[INFO|trainer.py:1613] 2022-12-02 19:52:59,024 >> Gradient Accumulation steps = 1
[INFO|trainer.py:1614] 2022-12-02 19:52:59,024 >> Total optimization steps = 84996
[INFO|trainer.py:1616] 2022-12-02 19:52:59,025 >> Number of trainable parameters = 124439808
[INFO|trainer.py:1608] 2022-12-03 21:44:00,182 >> ***** Running training *****
[INFO|trainer.py:1609] 2022-12-03 21:44:00,182 >> Num examples = 9443
[INFO|trainer.py:1610] 2022-12-03 21:44:00,182 >> Num Epochs = 216
[INFO|trainer.py:1611] 2022-12-03 21:44:00,182 >> Instantaneous batch size per device = 12
[INFO|trainer.py:1612] 2022-12-03 21:44:00,182 >> Total train batch size (w. parallel, distributed & accumulation) = 12
[INFO|trainer.py:1613] 2022-12-03 21:44:00,182 >> Gradient Accumulation steps = 1
[INFO|trainer.py:1614] 2022-12-03 21:44:00,182 >> Total optimization steps = 169992
[INFO|trainer.py:1616] 2022-12-03 21:44:00,183 >> Number of trainable parameters = 124439808
[INFO|trainer.py:1637] 2022-12-03 21:44:00,184 >> Continuing training from checkpoint, will skip to saved global_step
[INFO|trainer.py:1638] 2022-12-03 21:44:00,184 >> Continuing training from epoch 107
[INFO|trainer.py:1639] 2022-12-03 21:44:00,184 >> Continuing training from global step 84500
[INFO|trainer.py:1608] 2022-12-05 07:36:13,626 >> ***** Running training *****
[INFO|trainer.py:1609] 2022-12-05 07:36:13,626 >> Num examples = 9443
[INFO|trainer.py:1610] 2022-12-05 07:36:13,626 >> Num Epochs = 368
[INFO|trainer.py:1611] 2022-12-05 07:36:13,626 >> Instantaneous batch size per device = 12
[INFO|trainer.py:1612] 2022-12-05 07:36:13,626 >> Total train batch size (w. parallel, distributed & accumulation) = 12
[INFO|trainer.py:1613] 2022-12-05 07:36:13,626 >> Gradient Accumulation steps = 1
[INFO|trainer.py:1614] 2022-12-05 07:36:13,626 >> Total optimization steps = 289616
[INFO|trainer.py:1616] 2022-12-05 07:36:13,627 >> Number of trainable parameters = 124439808
[INFO|trainer.py:1637] 2022-12-05 07:36:13,628 >> Continuing training from checkpoint, will skip to saved global_step
[INFO|trainer.py:1638] 2022-12-05 07:36:13,628 >> Continuing training from epoch 255
[INFO|trainer.py:1639] 2022-12-05 07:36:13,628 >> Continuing training from global step 201000
{'loss': 8.0431, 'learning_rate': 4.970998635229893e-05, 'epoch': 0.64}
{'loss': 7.4867, 'learning_rate': 4.94158548637583e-05, 'epoch': 1.27}
{'loss': 7.322, 'learning_rate': 4.912172337521766e-05, 'epoch': 1.91}
......
{'loss': 3.901, 'learning_rate': 2.5010882865076008e-05, 'epoch': 108.01}
{'loss': 3.8959, 'learning_rate': 2.4863817120805686e-05, 'epoch': 108.64}
......
{'loss': 3.1625, 'learning_rate': 4.6090404254317857e-07, 'epoch': 214.1}
{'loss': 3.1592, 'learning_rate': 3.1413242976140055e-07, 'epoch': 214.74}
{'loss': 3.1625, 'learning_rate': 1.6706668549108195e-07, 'epoch': 215.37}
{'train_runtime': 72271.9602, 'train_samples_per_second': 28.222, 'train_steps_per_second': 2.352, 'train_loss': 1.7180436183842016, 'epoch': 216.0}
{'loss': 2.7087, 'learning_rate': 4.2642671675598036e-08, 'epoch': 367.85}
{'train_runtime': 74859.0808, 'train_samples_per_second': 46.421, 'train_steps_per_second': 3.869, 'train_loss': 0.8725239146935282, 'epoch': 368.0}
***** train metrics *****
epoch = 368.0
train_loss = 0.8725
train_runtime = 20:47:39.08
train_samples = 9443
train_samples_per_second = 46.421
train_steps_per_second = 3.869
12/06/2022 04:23:55 - INFO - __main__ - *** Evaluate ***
[INFO|trainer.py:2929] 2022-12-06 04:23:55,953 >> ***** Running Evaluation *****
[INFO|trainer.py:2931] 2022-12-06 04:23:55,953 >> Num examples = 283
[INFO|trainer.py:2934] 2022-12-06 04:23:55,954 >> Batch size = 12
100%|██████████| 24/24 [00:07<00:00, 3.20it/s]
[INFO|modelcard.py:449] 2022-12-06 04:24:04,760 >> Dropping the following result as it does not have all the necessary fields:
{'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}, 'metrics': [{'name': 'Accuracy', 'type': 'accuracy', 'value': 0.19599206157122803}]}
***** eval metrics *****
epoch = 368.0
eval_accuracy = 0.196
eval_loss = 7.9524
eval_runtime = 0:00:07.87
eval_samples = 283
eval_samples_per_second = 35.94
eval_steps_per_second = 3.048
perplexity = 2842.2766
📄 ライセンス
このセクションではライセンス情報に関する具体的な内容がありません。
Phi 2 GGUF
その他
Phi-2はマイクロソフトが開発した小型ながら強力な言語モデルで、27億のパラメータを持ち、効率的な推論と高品質なテキスト生成に特化しています。
大規模言語モデル 複数言語対応
P
TheBloke
41.5M
205
Roberta Large
MIT
マスク言語モデリングの目標で事前学習された大型英語言語モデルで、改良されたBERTの学習方法を採用しています。
大規模言語モデル 英語
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERTはBERT基礎モデルの蒸留バージョンで、同等の性能を維持しながら、より軽量で高効率です。シーケンス分類、タグ分類などの自然言語処理タスクに適しています。
大規模言語モデル 英語
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instructは多言語大規模言語モデルで、多言語対話ユースケースに最適化されており、一般的な業界ベンチマークで優れた性能を発揮します。
大規模言語モデル 英語
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM - RoBERTaは、100言語の2.5TBのフィルタリングされたCommonCrawlデータを使って事前学習された多言語モデルで、マスク言語モデリングの目標で学習されています。
大規模言語モデル 複数言語対応
X
FacebookAI
9.6M
664
Roberta Base
MIT
Transformerアーキテクチャに基づく英語の事前学習モデルで、マスク言語モデリングの目標を通じて大量のテキストでトレーニングされ、テキスト特徴抽出と下流タスクの微調整をサポートします。
大規模言語モデル 英語
R
FacebookAI
9.3M
488
Opt 125m
その他
OPTはMeta AIが公開したオープンプリトレーニングトランスフォーマー言語モデルスイートで、パラメータ数は1.25億から1750億まであり、GPT-3シリーズの性能に対抗することを目指しつつ、大規模言語モデルのオープンな研究を促進するものです。
大規模言語モデル 英語
O
facebook
6.3M
198
1
transformersライブラリに基づく事前学習モデルで、様々なNLPタスクに適用可能
大規模言語モデル
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1はMetaが発表した多言語大規模言語モデルシリーズで、8B、70B、405Bのパラメータ規模を持ち、8種類の言語とコード生成をサポートし、多言語対話シーンを最適化しています。
大規模言語モデル
Transformers 複数言語対応

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5ベーシック版はGoogleによって開発されたテキスト-to-テキスト変換Transformerモデルで、パラメータ規模は2.2億で、多言語NLPタスクをサポートしています。
大規模言語モデル 複数言語対応
T
google-t5
5.4M
702
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98