Goku 8x22B V0.1
Mixtral-8x22B-v0.1を微調整した多言語大規模モデル、総パラメータ数1410億、アクティブパラメータ350億
ダウンロード数 35
リリース時間 : 4/12/2024
モデル概要
これはguanaco-sharegpt-styleデータセットで微調整された混合専門家モデルで、多言語テキスト生成タスクをサポートします
モデル特徴
混合専門家アーキテクチャ
8つの専門家モデルを組み合わせ、各推論で一部の専門家のみをアクティブ化し、効率的な計算を実現
多言語サポート
フランス語、イタリア語、ドイツ語、スペイン語、英語をネイティブサポート
命令微調整
guanaco-sharegpt-styleデータセットに基づき最適化され、対話と命令追従能力を強化
モデル能力
多言語テキスト生成
長文理解
プログラミングコード生成
基礎推論
ストーリー創作
使用事例
コンテンツ創作
ストーリー生成
一貫性のある長編ナラティブテキストを生成
例示されているドラゴンボールテーマのストーリー
技術応用
コードアシスト
プログラミングコードの生成と説明
🚀 Goku-8x22B-v0.1 (Goku 141b - A35b)
このモデルは、philschmid/guanaco - sharegpt - style
データセットで微調整されたv2ray/Mixtral-8x22B-v0.1モデルのバージョンです。このモデルは合計1410億のパラメータを持ち、そのうち350億がアクティブです。

🚀 クイックスタート
このセクションでは、Goku-8x22B-v0.1
モデルを使用する方法を説明します。
💻 使用例
基本的な使用法
パイプラインを使用する場合:
from transformers import pipeline
pipe = pipeline("text-generation", model="MaziyarPanahi/Goku-8x22B-v0.1")
モデルを直接ロードする場合:
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/Goku-8x22B-v0.1")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/Goku-8x22B-v0.1")
高度な使用法
アダプターを使用してロードする場合: すでにv2ray/Mixtral-8x22B-v0.1またはmistral-community/Mixtral-8x22B-v0.1(これらは同じモデルです)をダウンロードしている場合は、PEFTを使用してアダプターのみをロードすることができます。
# assuming you have already downloaded the
# resizing the vocab
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id="v2ray/Mixtral-8x22B-v0.1"
peft_model_id = "~/.cache/huggingface/hub/models--MaziyarPanahi--Goku-8x22B-v0.1/adapter"
tokenizer = AutoTokenizer. from_pretrained (peft_model_id)
model = AutoModelForCausalLM. from_pretrained (model_id)
# I have added 2 new tokens for ChatML template
# this step is required if you are using PEFT/Adapter
model.resize_token_embeddings (len (tokenizer))
model.load_adapter(peft_model_id)
# you can even have TextStreamer and a text-generation pipeline with your adapter
streamer = TextStreamer(tokenizer)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=750,
temperature=0.6,
do_sample=True,
top_k=50,
top_p=0.95,
repetition_penalty=1.1,
return_full_text=False,
add_special_tokens=False,
streamer=streamer
)
生成例
Goku-8x22B-v0.1
は、文章生成、長文コンテキストに基づく質問応答、コーディング、およびいくつかの推論タスクでテストされています。次のバージョンでは、より多くのmath
とcoding
関連のデータセットを使用する予定です。
これはMaziyarPanahi/Goku-8x22B-v0.1によって生成されたサンプルストーリーです。
Goku had heard a commotion from his house but when he went to check he saw nothing. He thought to himself, "I'll let it go, it was probably just a bird or something. I'm sure it will be fine." But that was when he heard the commotion again, so he went outside and this time he saw two figures on the horizon. One of the figures was a giant pinkish-purple creature, while the other was small, pink, ball-shaped thing.
As the figures approached, Goku realized the large creature was his former enemy, the powerful Majin Buu. And the smaller creature was Kirby, a powerful Star Warrior from the planet Popstar. Goku couldn't believe his eyes.
The two creatures approached Goku menacingly. "Kirby and I have teamed up," said Majin Buu. "We're going to destroy the world!"
Goku was taken aback by the statement. He had never considered the possibility of these two powerful creatures joining forces. He knew he had to put a stop to them, before they could cause any more damage.
He took a deep breath and faced the two creatures. "You two won't get away with this," Goku said firmly. "I won't let you destroy the world."
Majin Buu scoffed, "You can't stop us! Kirby and I are too powerful!"
Goku quickly formed an energy ball in his hands and faced the two creatures. "We'll see about that," he said.
The battle that ensued was intense. The two creatures worked together, using their powerful energy attacks to try to overcome Goku. But Goku kept fighting, using his own powerful energy attacks to counter their moves.
After what seemed like an eternity, Goku managed to get the upper hand. He used a powerful energy attack to defeat the two creatures. After they were defeated, Goku looked around and saw the damage that had been caused by the battle. He knew he still had a lot of work ahead of him in order to prevent any further destruction, but he was determined to do his best.
He summoned all of his power and focused it into a powerful energy attack. The energy spread throughout his body and he felt his power grow stronger. With a battle cry, he launched the attack at the two creatures.
The energy hit them both, sending them flying back, stunned for a moment. Goku continued to pressure them with his energy attacks, but they soon recovered and began to counter-attack with their own energy blasts.
Goku knew he had to act quickly if he was going to defeat them. He focused his energy into one powerful attack, and launched it at Kirby. The attack hit and the Star Warrior was sent flying away.
Goku then focused his attention on Majin Buu. He launched a series of energy attacks, using his signature technique, the Kamehameha, and managed to defeat the powerful creature.
After the battle, Goku looked around at the destruction that had been caused by the two creatures. He knew he still had a lot of work ahead of him in order to prevent any further destruction, but he was determined to do his best.
With the two creatures defeated, Goku knew he still had a job to do. He took a deep breath and set out to repair the damage that had been caused by the two powerful creatures. He worked for hours, using his energy to put everything back in order and ensuring that the world was safe once again.
Goku's journey was long and hard but, in the end, he was successful. He defeated two powerful enemies and saved the world from destroyers. Thanks to his hard work, the world was able to heal and once again become a place of peace and prosperity.
📄 ライセンス
このプロジェクトはApache-2.0ライセンスの下でライセンスされています。
Phi 2 GGUF
その他
Phi-2はマイクロソフトが開発した小型ながら強力な言語モデルで、27億のパラメータを持ち、効率的な推論と高品質なテキスト生成に特化しています。
大規模言語モデル 複数言語対応
P
TheBloke
41.5M
205
Roberta Large
MIT
マスク言語モデリングの目標で事前学習された大型英語言語モデルで、改良されたBERTの学習方法を採用しています。
大規模言語モデル 英語
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERTはBERT基礎モデルの蒸留バージョンで、同等の性能を維持しながら、より軽量で高効率です。シーケンス分類、タグ分類などの自然言語処理タスクに適しています。
大規模言語モデル 英語
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instructは多言語大規模言語モデルで、多言語対話ユースケースに最適化されており、一般的な業界ベンチマークで優れた性能を発揮します。
大規模言語モデル 英語
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM - RoBERTaは、100言語の2.5TBのフィルタリングされたCommonCrawlデータを使って事前学習された多言語モデルで、マスク言語モデリングの目標で学習されています。
大規模言語モデル 複数言語対応
X
FacebookAI
9.6M
664
Roberta Base
MIT
Transformerアーキテクチャに基づく英語の事前学習モデルで、マスク言語モデリングの目標を通じて大量のテキストでトレーニングされ、テキスト特徴抽出と下流タスクの微調整をサポートします。
大規模言語モデル 英語
R
FacebookAI
9.3M
488
Opt 125m
その他
OPTはMeta AIが公開したオープンプリトレーニングトランスフォーマー言語モデルスイートで、パラメータ数は1.25億から1750億まであり、GPT-3シリーズの性能に対抗することを目指しつつ、大規模言語モデルのオープンな研究を促進するものです。
大規模言語モデル 英語
O
facebook
6.3M
198
1
transformersライブラリに基づく事前学習モデルで、様々なNLPタスクに適用可能
大規模言語モデル
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1はMetaが発表した多言語大規模言語モデルシリーズで、8B、70B、405Bのパラメータ規模を持ち、8種類の言語とコード生成をサポートし、多言語対話シーンを最適化しています。
大規模言語モデル
Transformers 複数言語対応

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5ベーシック版はGoogleによって開発されたテキスト-to-テキスト変換Transformerモデルで、パラメータ規模は2.2億で、多言語NLPタスクをサポートしています。
大規模言語モデル 複数言語対応
T
google-t5
5.4M
702
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98