Wav2vec2 Large Japanese
facebook/wav2vec2-large-xlsr-53モデルを微調整した日本語音声認識モデルで、16kHzサンプリングレートの入力をサポートします。
ダウンロード数 316
リリース時間 : 3/2/2022
モデル概要
公開データセットを使って訓練された日本語自動音声認識モデルで、言語モデルなしで直接使用できます。
モデル特徴
複数データセットによる訓練
一般音声、JSUT、TEDxJPなどの複数の公開日本語データセットを使って微調整します。
言語モデル不要
直接使用でき、追加の言語モデルのサポートは必要ありません。
16kHzサンプリングレートのサポート
16kHzサンプリングレートの音声入力に最適化されています。
モデル能力
日本語音声認識
音声をテキストに変換
使用事例
音声文字起こし
日常会話の文字起こし
日本語の日常会話をテキストに変換します。
サンプルでは基本的な会話内容を認識できますが、一部の誤りがあります。
講演内容の記録
TED講演などの正式な場面の日本語内容を文字起こしします。
🚀 Wav2Vec2-Large-Japanese
このモデルは、Common Voice、JSUT、TEDxJP などのデータを使用して、日本語に対して facebook/wav2vec2-large-xlsr-53 をファインチューニングしたものです。これは公開データで学習されたモデルです。600時間以上のデータで学習された、より高精度なモデルを使用したい場合は、nha282@gmail.com までご連絡ください。
このモデルを使用する際には、音声入力が16kHzでサンプリングされていることを確認してください。
🚀 クイックスタート
このモデルの基本的な使い方や評価方法について説明します。
✨ 主な機能
- 日本語の自動音声認識に特化したモデルです。
- 公開データで学習されており、一定の精度を持っています。
- 600時間以上のデータで学習された高精度モデルも提供可能です。
💻 使用例
基本的な使用法
このモデルは、言語モデルを使用せずに直接使用することができます。
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "ja"
MODEL_ID = "NTQAI/wav2vec2-large-japanese"
SAMPLES = 3
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
参照文 | 予測文 |
---|---|
祖母は、おおむね機嫌よく、サイコロをころがしている。 | 祖母思い切れを最布ロぼがしている |
財布をなくしたので、交番へ行きます。 | 財布をなく時間ので交番でへ行きます |
飲み屋のおやじ、旅館の主人、医者をはじめ、交際のある人にきいてまわったら、みんな、私より収入が多いはずなのに、税金は安い。 | ロみ屋のおやし旅館の主人に医をはめ交載のあの人に聞いて回ったらみんな私より収入が多い発ずなのに請金は安い |
高度な使用法
このモデルは、Common Voiceの日本語テストデータで以下のように評価することができます。
import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "ja"
MODEL_ID = "NTQAI/wav2vec2-large-japanese"
DEVICE = "cuda"
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"]
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
テスト結果:
モデル | 単語誤り率 (WER) | 文字誤り率 (CER) |
---|---|---|
NTQAI/wav2vec2-large-japanese | 73.10% | 18.15% |
vumichien/wav2vec2-large-xlsr-japanese | 1108.86% | 23.40% |
qqhann/w2v_hf_jsut_xlsr53 | 1012.18% | 70.77% |
⚠️ 重要提示
このモデルを使用する際には、音声入力が16kHzでサンプリングされていることを確認してください。
プロパティ | 詳細 |
---|---|
データセット | common_voice |
評価指標 | wer、cer |
タグ | audio、automatic-speech-recognition、speech |
モデル名 | 結果 |
---|---|
Wav2Vec2 Japanese by NTQAI | タスク: 音声認識 (Speech Recognition) データセット: Common Voice ja 評価指標: Test WER = 81.3、Test CER = 21.9 |
Voice Activity Detection
MIT
pyannote.audio 2.1バージョンに基づく音声活動検出モデルで、音声中の音声活動時間帯を識別するために使用されます
音声認識
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
これはポルトガル語音声認識タスク向けにファインチューニングされたXLSR-53大規模モデルで、Common Voice 6.1データセットでトレーニングされ、ポルトガル語音声からテキストへの変換をサポートします。
音声認識 その他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
WhisperはOpenAIが提案した先進的な自動音声認識(ASR)および音声翻訳モデルで、500万時間以上の注釈付きデータで訓練されており、強力なデータセット間およびドメイン間の汎化能力を持っています。
音声認識 複数言語対応
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
WhisperはOpenAIが開発した最先端の自動音声認識(ASR)および音声翻訳モデルで、500万時間以上のラベル付きデータでトレーニングされ、ゼロショット設定において強力な汎化能力を発揮します。
音声認識
Transformers 複数言語対応

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをファインチューニングしたロシア語音声認識モデル、16kHzサンプリングレートの音声入力をサポート
音声認識 その他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをファインチューニングした中国語音声認識モデルで、16kHzサンプリングレートの音声入力をサポートしています。
音声認識 中国語
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
facebook/wav2vec2-large-xlsr-53をファインチューニングしたオランダ語音声認識モデルで、Common VoiceとCSS10データセットでトレーニングされ、16kHz音声入力に対応しています。
音声認識 その他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
facebook/wav2vec2-large-xlsr-53モデルをベースにファインチューニングした日本語音声認識モデルで、16kHzサンプリングレートの音声入力をサポート
音声認識 日本語
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
Hugging Faceの事前学習モデルを基にしたテキストと音声の強制アライメントツールで、多言語対応かつメモリ効率に優れています
音声認識
Transformers 複数言語対応

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
facebook/wav2vec2-large-xlsr - 53をベースに微調整されたアラビア語音声認識モデルで、Common Voiceとアラビア語音声コーパスで訓練されました。
音声認識 アラビア語
W
jonatasgrosman
2.3M
37
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98