Indicbart XLSum
IndicBART-XLSumは、多言語独立スクリプトIndicBARTに基づくシーケンス・ツー・シーケンス事前学習モデルで、インド言語に特化しています。
ダウンロード数 290
リリース時間 : 5/11/2022
モデル概要
このモデルは7つのインド言語をサポートし、mBARTアーキテクチャに基づいており、主にテキスト要約タスクに使用されます。
モデル特徴
多言語サポート
7つのインド言語をサポートしており、これらの言語はすべてmBART50やmT5ではサポートされていません。
計算効率の高さ
このモデルはmBARTやmT5(ベーシック版)モデルよりもはるかに小さいため、ファインチューニングやデコード時の計算コストが低くなります。
独立スクリプト処理
各言語は独自のスクリプトで記述され、デーヴァナーガリー文字とのスクリプトマッピングを実行する必要がありません。
モデル能力
多言語テキスト要約
シーケンス・ツー・シーケンス生成
使用事例
ニュース要約
インド言語ニュース要約
インド言語のニュース記事を自動的に要約生成します。
🚀 IndicBART-XLSum
IndicBART-XLSumは、インド諸言語に焦点を当てた、マルチリンガルの別スクリプトのIndicBARTベースのシーケンス-to-シーケンス事前学習モデルです。現在は7つのインドの言語をサポートしており、mBARTアーキテクチャに基づいています。
🚀 クイックスタート
IndicBART-XLSumを使用するには、以下のコードを参考にしてください。
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
from transformers import AlbertTokenizer, AutoTokenizer
tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/IndicBART-XLSum", do_lower_case=False, use_fast=False, keep_accents=True)
# Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/IndicBART-XLSum", do_lower_case=False, use_fast=False, keep_accents=True)
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/IndicBART-XLSum")
# Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/IndicBART-XLSum")
# Some initial mapping
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
# To get lang_id use any of ['<2bn>', '<2gu>', '<2hi>', '<2mr>', '<2pa>', '<2ta>', '<2te>']
# First tokenize the input and outputs. The format below is how IndicBART-XLSum was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
inp = tokenizer("टेसा जॉवल का कहना है कि मृतकों और लापता लोगों के परिजनों की मदद के लिए एक केंद्र स्थापित किया जा रहा है. उन्होंने इस हादसे के तीन के बाद भी मृतकों की सूची जारी करने में हो रही देरी के बारे में स्पष्टीकरण देते हुए कहा है शवों की ठीक पहचान होना ज़रूरी है. पुलिस के अनुसार धमाकों में मारे गए लोगों की संख्या अब 49 हो गई है और अब भी 20 से ज़्यादा लोग लापता हैं. पुलिस के अनुसार लंदन पर हमले योजनाबद्ध तरीके से हुए और भूमिगत रेलगाड़ियों में विस्फोट तो 50 सैकेंड के भीतर हुए. पहचान की प्रक्रिया किंग्स क्रॉस स्टेशन के पास सुरंग में धमाके से क्षतिग्रस्त रेल कोचों में अब भी पड़े शवों के बारे में स्थिति साफ नहीं है और पुलिस ने आगाह किया है कि हताहतों की संख्या बढ़ सकती है. पुलिस, न्यायिक अधिकारियों, चिकित्सकों और अन्य विशेषज्ञों का एक आयोग बनाया गया है जिसकी देख-रेख में शवों की पहचान की प्रक्रिया पूरी होगी. महत्वपूर्ण है कि गुरुवार को लंदन में मृतकों के सम्मान में सार्वजनिक समारोह होगा जिसमें उन्हें श्रद्धाँजलि दी जाएगी और दो मिनट का मौन रखा जाएगा. पुलिस का कहना है कि वह इस्लामी चरमपंथी संगठन अबू हफ़्स अल-मासरी ब्रिगेड्स का इन धमाकों के बारे में किए गए दावे को गंभीरता से ले रही है. 'धमाके पचास सेकेंड में हुए' पुलिस के अनुसार लंदन पर हुए हमले योजनाबद्ध तरीके से किए गए थे. पुलिस के अनुसार भूमिगत रेलों में तीन बम अलग-अलग जगहों लगभग अचानक फटे थे. इसलिए पुलिस को संदेह है कि धमाकों में टाइमिंग उपकरणों का उपयोग किया गया होगा. यह भी तथ्य सामने आया है कि धमाकों में आधुनिक किस्म के विस्फोटकों का उपयोग किया गया था. पहले माना जा रहा था कि हमलों में देसी विस्फोटकों का इस्तेमाल किया गया होगा. पुलिस मुख्यालय स्कॉटलैंड यार्ड में सहायक उपायुक्त ब्रायन पैडिक ने बताया कि भूमिगत रेलों में तीन धमाके 50 सेकेंड के अंतराल के भीतर हुए थे. धमाके गुरुवार सुबह आठ बजकर पचास मिनट पर हुए थे. लंदन अंडरग्राउंड से मिली विस्तृत तकनीकी सूचनाओं से यह तथ्य सामने आया है. इससे पहले बम धमाकों में अच्छे खासे अंतराल की बात की जा रही थी.</s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
out = tokenizer("<2hi>परिजनों की मदद की ज़िम्मेदारी मंत्री पर </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])
# For loss
model_outputs.loss ## This is not label smoothed.
# For logits
model_outputs.logits
# For generation. Pardon the messiness. Note the decoder_start_token_id.
model.eval() # Set dropouts to zero
model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))
# Decode to get output strings
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(decoded_output) # लंदन धमाकों में मारे गए लोगों की सूची जारी
✨ 主な機能
- サポート言語: ベンガル語、グジャラト語、ヒンディー語、マラーティー語、パンジャブ語、タミル語、テルグ語。これらの言語のすべてがmBART50やmT5でサポートされているわけではありません。
- 軽量モデル: mBARTやmT5(-base)モデルよりもはるかに小さく、ファインチューニングやデコードの際の計算コストが低い。
- 学習データ: XLSumコーパスのインド部分で学習されています。
- スクリプト独立性: 各言語は独自のスクリプトで記述されているため、デーヴァナーガリー文字との間でスクリプトマッピングを行う必要はありません。
📚 ドキュメント
ベンチマーク
IndicBART-XLSum
のテストセットでのスコアは以下の通りです。
言語 | Rouge-1 / Rouge-2 / Rouge-L |
---|---|
bn | 0.172331 / 0.051777 / 0.160245 |
gu | 0.143240 / 0.039993 / 0.133981 |
hi | 0.220394 / 0.065464 / 0.198816 |
mr | 0.172568 / 0.062591 / 0.160403 |
pa | 0.218274 / 0.066087 / 0.192010 |
ta | 0.177317 / 0.058636 / 0.166324 |
te | 0.156386 / 0.041042 / 0.144179 |
平均 | 0.180073 / 0.055084 / 0.165137 |
注意事項
- このモデルは最新バージョンのtransformersと互換性がありますが、バージョン4.3.2で開発されているため、可能であれば4.3.2を使用することを検討してください。
- ロジットや損失の取得方法、出力の生成方法を示しましたが、MBartForConditionalGenerationクラスでできることはほぼすべて行うことができます。
- 使用しているトークナイザーはSentencePieceに基づいており、BPEではありません。そのため、
AlbertTokenizer
クラスを使用しています。
Phi 2 GGUF
その他
Phi-2はマイクロソフトが開発した小型ながら強力な言語モデルで、27億のパラメータを持ち、効率的な推論と高品質なテキスト生成に特化しています。
大規模言語モデル 複数言語対応
P
TheBloke
41.5M
205
Roberta Large
MIT
マスク言語モデリングの目標で事前学習された大型英語言語モデルで、改良されたBERTの学習方法を採用しています。
大規模言語モデル 英語
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERTはBERT基礎モデルの蒸留バージョンで、同等の性能を維持しながら、より軽量で高効率です。シーケンス分類、タグ分類などの自然言語処理タスクに適しています。
大規模言語モデル 英語
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instructは多言語大規模言語モデルで、多言語対話ユースケースに最適化されており、一般的な業界ベンチマークで優れた性能を発揮します。
大規模言語モデル 英語
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM - RoBERTaは、100言語の2.5TBのフィルタリングされたCommonCrawlデータを使って事前学習された多言語モデルで、マスク言語モデリングの目標で学習されています。
大規模言語モデル 複数言語対応
X
FacebookAI
9.6M
664
Roberta Base
MIT
Transformerアーキテクチャに基づく英語の事前学習モデルで、マスク言語モデリングの目標を通じて大量のテキストでトレーニングされ、テキスト特徴抽出と下流タスクの微調整をサポートします。
大規模言語モデル 英語
R
FacebookAI
9.3M
488
Opt 125m
その他
OPTはMeta AIが公開したオープンプリトレーニングトランスフォーマー言語モデルスイートで、パラメータ数は1.25億から1750億まであり、GPT-3シリーズの性能に対抗することを目指しつつ、大規模言語モデルのオープンな研究を促進するものです。
大規模言語モデル 英語
O
facebook
6.3M
198
1
transformersライブラリに基づく事前学習モデルで、様々なNLPタスクに適用可能
大規模言語モデル
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1はMetaが発表した多言語大規模言語モデルシリーズで、8B、70B、405Bのパラメータ規模を持ち、8種類の言語とコード生成をサポートし、多言語対話シーンを最適化しています。
大規模言語モデル
Transformers 複数言語対応

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5ベーシック版はGoogleによって開発されたテキスト-to-テキスト変換Transformerモデルで、パラメータ規模は2.2億で、多言語NLPタスクをサポートしています。
大規模言語モデル 複数言語対応
T
google-t5
5.4M
702
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98