🚀 BanglaT5
このリポジトリには、BanglaT5 モデルの事前学習済みチェックポイントが含まれています。これは、"Span Corruption" 目的で事前学習されたシーケンス・トゥ・シーケンスのトランスフォーマーモデルです。このチェックポイントを使用して微調整されたモデルは、ベンガル語の多くの自然言語生成(NLG)タスクで最先端の結果を達成します。
機械翻訳
、要約生成
、質問応答
などのさまざまな下流タスクでの微調整については、公式GitHub リポジトリ のスクリプトを参照してください。
⚠️ 重要な注意
このモデルは、こちら で利用可能な特定の正規化パイプラインを使用して事前学習されています。公式GitHubリポジトリのすべての微調整スクリプトは、デフォルトでこの正規化を使用しています。事前学習済みモデルを別のタスクに適応させる場合は、トークン化する前にこのパイプラインを使用してテキストユニットを正規化することで、最良の結果を得ることができます。基本的な例を以下に示します。
🚀 クイックスタート
💻 使用例
基本的な使用法
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from normalizer import normalize
model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5")
tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/banglat5", use_fast=False)
input_sentence = ""
input_ids = tokenizer(normalize(input_sentence), return_tensors="pt").input_ids
generated_tokens = model.generate(input_ids)
decoded_tokens = tokenizer.batch_decode(generated_tokens)[0]
print(decoded_tokens)
📊 ベンチマーク
モデル |
パラメータ数 |
MT (SacreBLEU) |
TS (ROUGE-2) |
QA (EM/F1) |
MD (SacreBLEU-1) |
NHG (ROUGE-2) |
XLS (ROUGE-2) |
BNLG スコア |
mT5 (base) |
582M |
36.6/22.5 |
10.3 |
59.0/65.3 |
17.5 |
9.6 |
2.7/0.7 |
24.9 |
XLM-ProphetNet |
616M |
23.3/16.4 |
7.8 |
53.0/57.3 |
20.0 |
9.5 |
6.2/2.7 |
21.8 |
mBART-50 |
611M |
23.6/16.7 |
10.4 |
53.4/58.9 |
18.5 |
11.2 |
5.4/3.7 |
22.4 |
IndicBART |
244M |
22.7/13.1 |
8.1 |
53.3/58.8 |
14.8 |
7.9 |
6.3/2.5 |
20.8 |
BanglaT5 |
247M |
38.8/25.2 |
13.7 |
68.5/74.8 |
19.0 |
13.8 |
6.4/4.0 |
29.4 |
ベンチマーク用のデータセットは以下の通りです。
📄 引用
このモデルを使用する場合は、以下の論文を引用してください。
@article{bhattacharjee2022banglanlg,
author = {Abhik Bhattacharjee and Tahmid Hasan and Wasi Uddin Ahmad and Rifat Shahriyar},
title = {BanglaNLG: Benchmarks and Resources for Evaluating Low-Resource Natural Language Generation in Bangla},
journal = {CoRR},
volume = {abs/2205.11081},
year = {2022},
url = {https://arxiv.org/abs/2205.11081},
eprinttype = {arXiv},
eprint = {2205.11081}
}
正規化モジュールを使用する場合は、以下の論文を引用してください。
@inproceedings{hasan-etal-2020-low,
title = "Not Low-Resource Anymore: Aligner Ensembling, Batch Filtering, and New Datasets for {B}engali-{E}nglish Machine Translation",
author = "Hasan, Tahmid and
Bhattacharjee, Abhik and
Samin, Kazi and
Hasan, Masum and
Basak, Madhusudan and
Rahman, M. Sohel and
Shahriyar, Rifat",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-main.207",
doi = "10.18653/v1/2020.emnlp-main.207",
pages = "2612--2623",
abstract = "Despite being the seventh most widely spoken language in the world, Bengali has received much less attention in machine translation literature due to being low in resources. Most publicly available parallel corpora for Bengali are not large enough; and have rather poor quality, mostly because of incorrect sentence alignments resulting from erroneous sentence segmentation, and also because of a high volume of noise present in them. In this work, we build a customized sentence segmenter for Bengali and propose two novel methods for parallel corpus creation on low-resource setups: aligner ensembling and batch filtering. With the segmenter and the two methods combined, we compile a high-quality Bengali-English parallel corpus comprising of 2.75 million sentence pairs, more than 2 million of which were not available before. Training on neural models, we achieve an improvement of more than 9 BLEU score over previous approaches to Bengali-English machine translation. We also evaluate on a new test set of 1000 pairs made with extensive quality control. We release the segmenter, parallel corpus, and the evaluation set, thus elevating Bengali from its low-resource status. To the best of our knowledge, this is the first ever large scale study on Bengali-English machine translation. We believe our study will pave the way for future research on Bengali-English machine translation as well as other low-resource languages. Our data and code are available at https://github.com/csebuetnlp/banglanmt.",
}