BGE M3 Ko
BAAI/bge-m3を基に最適化された韓国語・英語バイリンガル文埋め込みモデルで、意味的テキスト類似性や情報検索などのタスクをサポート
ダウンロード数 29.78k
リリース時間 : 9/17/2024
モデル概要
これはsentence-transformersフレームワークで訓練されたモデルで、特に韓国語と英語に最適化されています。文や段落を1024次元の密なベクトル空間にマッピングし、意味的テキスト類似性、意味検索、言い換えマイニング、テキスト分類、クラスタリングなどのタスクに使用できます。
モデル特徴
韓国語最適化
標準BGE-M3を基に韓国語向けに特別に訓練・最適化
長文サポート
最大8192トークンのシーケンス長をサポートし、長文処理に適している
高性能検索
韓国語埋め込みベンチマークで優れた性能を発揮し、Top-1 F1スコアは0.7456を達成
複数類似度計算
コサイン類似度と内積類似度の2つの計算方法をサポート
モデル能力
意味的テキスト類似性計算
情報検索
テキスト特徴抽出
テキスト分類
テキストクラスタリング
言い換えマイニング
使用事例
情報検索
韓国語文書検索
クエリ文に基づいて韓国語文書ライブラリから最も関連性の高い文書を検索
Top-1検索で0.7456のF1スコアを達成
テキスト類似性
類似質問マッチング
異なる表現だが意味的に類似した質問を識別
🚀 SentenceTransformer
このモデルは、train_setデータセットで学習されたsentence-transformersモデルです。文章や段落を1024次元の密ベクトル空間にマッピングし、意味的な文章の類似性、意味検索、言い換えマイニング、テキスト分類、クラスタリングなどに使用できます。
🚀 クイックスタート
このモデルを使用するには、まずSentence Transformersライブラリをインストールする必要があります。その後、モデルをロードして推論を実行できます。
pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
# 🤗 Hubからダウンロード
model = SentenceTransformer("dragonkue/bge-m3-ko")
# 推論を実行
sentences = [
'수급권자 중 근로 능력이 없는 임산부는 몇 종에 해당하니?',
'내년부터 저소득층 1세 미만 아동의 \n의료비 부담이 더 낮아진다!\n의료급여제도 개요\n□ (목적) 생활유지 능력이 없거나 생활이 어려운 국민들에게 발생하는 질병, 부상, 출산 등에 대해 국가가 의료서비스 제공\n□ (지원대상) 국민기초생활보장 수급권자, 타 법에 의한 수급권자 등\n\n| 구분 | 국민기초생활보장법에 의한 수급권자 | 국민기초생활보장법 이외의 타 법에 의한 수급권자 |\n| --- | --- | --- |\n| 1종 | ○ 국민기초생활보장 수급권자 중 근로능력이 없는 자만으로 구성된 가구 - 18세 미만, 65세 이상 - 4급 이내 장애인 - 임산부, 병역의무이행자 등 | ○ 이재민(재해구호법) ○ 의상자 및 의사자의 유족○ 국내 입양된 18세 미만 아동○ 국가유공자 및 그 유족․가족○ 국가무형문화재 보유자 및 그 가족○ 새터민(북한이탈주민)과 그 가족○ 5․18 민주화운동 관련자 및 그 유가족○ 노숙인 ※ 행려환자 (의료급여법 시행령) |\n| 2종 | ○ 국민기초생활보장 수급권자 중 근로능력이 있는 가구 | - |\n',
'이어 이날 오후 1시30분부터 열릴 예정이던 스노보드 여자 슬로프스타일 예선 경기는 연기를 거듭하다 취소됐다. 조직위는 예선 없이 다음 날 결선에서 참가자 27명이 한번에 경기해 순위를 가리기로 했다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# 埋め込みベクトルの類似度スコアを取得
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主な機能
- 文章や段落を1024次元の密ベクトル空間にマッピングすることができます。
- 意味的な文章の類似性、意味検索、言い換えマイニング、テキスト分類、クラスタリングなどに使用できます。
📦 インストール
まず、Sentence Transformersライブラリをインストールします。
pip install -U sentence-transformers
💻 使用例
基本的な使用法
from sentence_transformers import SentenceTransformer
# 🤗 Hubからダウンロード
model = SentenceTransformer("dragonkue/bge-m3-ko")
# 推論を実行
sentences = [
'수급권자 중 근로 능력이 없는 임산부는 몇 종에 해당하니?',
'내년부터 저소득층 1세 미만 아동의 \n의료비 부담이 더 낮아진다!\n의료급여제도 개요\n□ (목적) 생활유지 능력이 없거나 생활이 어려운 국민들에게 발생하는 질병, 부상, 출산 등에 대해 국가가 의료서비스 제공\n□ (지원대상) 국민기초생활보장 수급권자, 타 법에 의한 수급권자 등\n\n| 구분 | 국민기초생활보장법에 의한 수급권자 | 국민기초생활보장법 이외의 타 법에 의한 수급권자 |\n| --- | --- | --- |\n| 1종 | ○ 국민기초생활보장 수급권자 중 근로능력이 없는 자만으로 구성된 가구 - 18세 미만, 65세 이상 - 4급 이내 장애인 - 임산부, 병역의무이행자 등 | ○ 이재민(재해구호법) ○ 의상자 및 의사자의 유족○ 국내 입양된 18세 미만 아동○ 국가유공자 및 그 유족․가족○ 국가무형문화재 보유자 및 그 가족○ 새터민(북한이탈주민)과 그 가족○ 5․18 민주화운동 관련자 및 그 유가족○ 노숙인 ※ 행려환자 (의료급여법 시행령) |\n| 2종 | ○ 국민기초생활보장 수급권자 중 근로능력이 있는 가구 | - |\n',
'이어 이날 오후 1시30분부터 열릴 예정이던 스노보드 여자 슬로프스타일 예선 경기는 연기를 거듭하다 취소됐다. 조직위는 예선 없이 다음 날 결선에서 참가자 27명이 한번에 경기해 순위를 가리기로 했다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# 埋め込みベクトルの類似度スコアを取得
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 ドキュメント
モデルの詳細
- 中国語と英語以外の言語の学習が不十分なため、他の言語を最適に使用するには追加学習が必要です。
- このモデルは、韓国語データセットで追加学習されています。
モデルの説明
属性 | 详情 |
---|---|
モデルタイプ | Sentence Transformer Transformer Encoder |
最大シーケンス長 | 8192トークン |
出力次元数 | 1024トークン |
類似度関数 | コサイン類似度 |
モデルのソース
- ドキュメント: Sentence Transformers Documentation
- リポジトリ: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
完全なモデルアーキテクチャ
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
🔧 技術詳細
- ndcg、mrr、mapメトリクスはランキングを考慮したメトリクスであり、accuracy、precision、recallはランキングを考慮しないメトリクスです。(例:検索上位10件のランキングを考慮する場合、正しいドキュメントが1位にある場合と10位にある場合では異なるスコアが与えられます。ただし、accuracy、precision、recallのスコアは上位10件にある場合は同じです。)
情報検索
- Korean Embedding Benchmarkは、文字列長の3/4分位数が1024と比較的長いベンチマークです。
AutoRAGを使用した韓国語埋め込みベンチマーク
これは韓国語埋め込みモデルのベンチマークです。(https://github.com/Marker-Inc-Korea/AutoRAG-example-korean-embedding-benchmark)
Top-k 1
モデル名 | F1 | Recall | Precision | mAP | mRR | NDCG |
---|---|---|---|---|---|---|
paraphrase-multilingual-mpnet-base-v2 | 0.3596 | 0.3596 | 0.3596 | 0.3596 | 0.3596 | 0.3596 |
KoSimCSE-roberta | 0.4298 | 0.4298 | 0.4298 | 0.4298 | 0.4298 | 0.4298 |
Cohere embed-multilingual-v3.0 | 0.3596 | 0.3596 | 0.3596 | 0.3596 | 0.3596 | 0.3596 |
openai ada 002 | 0.4737 | 0.4737 | 0.4737 | 0.4737 | 0.4737 | 0.4737 |
multilingual-e5-large-instruct | 0.4649 | 0.4649 | 0.4649 | 0.4649 | 0.4649 | 0.4649 |
Upstage Embedding | 0.6579 | 0.6579 | 0.6579 | 0.6579 | 0.6579 | 0.6579 |
paraphrase-multilingual-MiniLM-L12-v2 | 0.2982 | 0.2982 | 0.2982 | 0.2982 | 0.2982 | 0.2982 |
openai_embed_3_small | 0.5439 | 0.5439 | 0.5439 | 0.5439 | 0.5439 | 0.5439 |
ko-sroberta-multitask | 0.4211 | 0.4211 | 0.4211 | 0.4211 | 0.4211 | 0.4211 |
openai_embed_3_large | 0.6053 | 0.6053 | 0.6053 | 0.6053 | 0.6053 | 0.6053 |
KU-HIAI-ONTHEIT-large-v1 | 0.7105 | 0.7105 | 0.7105 | 0.7105 | 0.7105 | 0.7105 |
KU-HIAI-ONTHEIT-large-v1.1 | 0.7193 | 0.7193 | 0.7193 | 0.7193 | 0.7193 | 0.7193 |
kf-deberta-multitask | 0.4561 | 0.4561 | 0.4561 | 0.4561 | 0.4561 | 0.4561 |
gte-multilingual-base | 0.5877 | 0.5877 | 0.5877 | 0.5877 | 0.5877 | 0.5877 |
KoE5 | 0.7018 | 0.7018 | 0.7018 | 0.7018 | 0.7018 | 0.7018 |
BGE-m3 | 0.6578 | 0.6578 | 0.6578 | 0.6578 | 0.6578 | 0.6578 |
bge-m3-korean | 0.5351 | 0.5351 | 0.5351 | 0.5351 | 0.5351 | 0.5351 |
BGE-m3-ko | 0.7456 | 0.7456 | 0.7456 | 0.7456 | 0.7456 | 0.7456 |
Top-k 3
モデル名 | F1 | Recall | Precision | mAP | mRR | NDCG |
---|---|---|---|---|---|---|
paraphrase-multilingual-mpnet-base-v2 | 0.2368 | 0.4737 | 0.1579 | 0.2032 | 0.2032 | 0.2712 |
KoSimCSE-roberta | 0.3026 | 0.6053 | 0.2018 | 0.2661 | 0.2661 | 0.3515 |
Cohere embed-multilingual-v3.0 | 0.2851 | 0.5702 | 0.1901 | 0.2515 | 0.2515 | 0.3321 |
openai ada 002 | 0.3553 | 0.7105 | 0.2368 | 0.3202 | 0.3202 | 0.4186 |
multilingual-e5-large-instruct | 0.3333 | 0.6667 | 0.2222 | 0.2909 | 0.2909 | 0.3856 |
Upstage Embedding | 0.4211 | 0.8421 | 0.2807 | 0.3509 | 0.3509 | 0.4743 |
paraphrase-multilingual-MiniLM-L12-v2 | 0.2061 | 0.4123 | 0.1374 | 0.1740 | 0.1740 | 0.2340 |
openai_embed_3_small | 0.3640 | 0.7281 | 0.2427 | 0.3026 | 0.3026 | 0.4097 |
ko-sroberta-multitask | 0.2939 | 0.5877 | 0.1959 | 0.2500 | 0.2500 | 0.3351 |
openai_embed_3_large | 0.3947 | 0.7895 | 0.2632 | 0.3348 | 0.3348 | 0.4491 |
KU-HIAI-ONTHEIT-large-v1 | 0.4386 | 0.8772 | 0.2924 | 0.3421 | 0.3421 | 0.4766 |
KU-HIAI-ONTHEIT-large-v1.1 | 0.4430 | 0.8860 | 0.2953 | 0.3406 | 0.3406 | 0.4778 |
kf-deberta-multitask | 0.3158 | 0.6316 | 0.2105 | 0.2792 | 0.2792 | 0.3679 |
gte-multilingual-base | 0.4035 | 0.8070 | 0.2690 | 0.3450 | 0.3450 | 0.4614 |
KoE5 | 0.4254 | 0.8509 | 0.2836 | 0.3173 | 0.3173 | 0.4514 |
BGE-m3 | 0.4254 | 0.8508 | 0.2836 | 0.3421 | 0.3421 | 0.4701 |
bge-m3-korean | 0.3684 | 0.7368 | 0.2456 | 0.3143 | 0.3143 | 0.4207 |
📄 ライセンス
このモデルは、Apache 2.0ライセンスの下で提供されています。
Jina Embeddings V3
Jina Embeddings V3 は100以上の言語をサポートする多言語文埋め込みモデルで、文の類似度と特徴抽出タスクに特化しています。
テキスト埋め込み
Transformers 複数言語対応

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
MS Marcoパッセージランキングタスクで訓練されたクロスエンコーダモデル、情報検索におけるクエリ-パッセージ関連性スコアリング用
テキスト埋め込み 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
蒸留技術に基づくスパース検索モデルで、OpenSearch向けに最適化されており、推論不要のドキュメントエンコーディングをサポートし、検索関連性と効率性においてV1版を上回ります
テキスト埋め込み
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
PubMedBERTに基づく生物医学エンティティ表現モデルで、自己アライメント事前学習により意味関係の捕捉を最適化します。
テキスト埋め込み 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Largeは強力なセンテンストランスフォーマーモデルで、文の類似度とテキスト埋め込みタスクに特化しており、複数のベンチマークテストで優れた性能を発揮します。
テキスト埋め込み 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 は英語の文章変換モデルで、文章類似度タスクに特化しており、複数のテキスト埋め込みベンチマークで優れた性能を発揮します。
テキスト埋め込み
Transformers 複数言語対応

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base は50以上の言語をサポートする多言語文埋め込みモデルで、文類似度計算などのタスクに適しています。
テキスト埋め込み
Transformers 複数言語対応

G
Alibaba-NLP
1.2M
246
Polybert
polyBERTは、完全に機械駆動の超高速ポリマー情報学を実現するための化学言語モデルです。PSMILES文字列を600次元の密なフィンガープリントにマッピングし、ポリマー化学構造を数値形式で表現します。
テキスト埋め込み
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
トルコ語BERTベースの文埋め込みモデルで、意味的類似性タスクに最適化
テキスト埋め込み
Transformers その他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
BAAI/bge-small-en-v1.5モデルを微調整したテキスト埋め込みモデルで、MEDIデータセットとMTEB分類タスクデータセットで訓練され、検索タスクのクエリエンコーディング能力を最適化しました。
テキスト埋め込み
Safetensors 英語
G
avsolatorio
945.68k
29
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98