🚀 sentence-t5-base-nlpl-code_search_net
このモデルはsentence-transformersモデルです。文章や段落を768次元の密ベクトル空間にマッピングし、クラスタリングや意味検索などのタスクに使用できます。
このモデルはcode_search_netデータセットを使って学習されています。
🚀 クイックスタート
このモデルを使うには、sentence-transformersをインストールする必要があります。
pip install -U sentence-transformers
その後、以下のようにモデルを使用できます。
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
✨ 主な機能
このモデルは文章や段落を768次元の密ベクトル空間にマッピングすることができ、クラスタリングや意味検索などのタスクに使用できます。
📦 インストール
pip install -U sentence-transformers
💻 使用例
基本的な使用法
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
📚 ドキュメント
評価結果
このモデルの自動評価については、Sentence Embeddings Benchmarkを参照してください: https://seb.sbert.net
学習
このモデルは以下のパラメータで学習されています。
DataLoader:
torch.utils.data.dataloader.DataLoader
(長さ: 58777) で、以下のパラメータが設定されています。
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
で、以下のパラメータが設定されています。
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit()
メソッドのパラメータ:
{
"epochs": 4,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
モデルのアーキテクチャ
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: T5EncoderModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Normalize()
)
📄 ライセンス
このモデルはAGPL-3.0ライセンスの下で提供されています。